63 research outputs found

    An integrated modeling framework for infrastructure system-of-systems simulation

    Get PDF
    Design of future hard infrastructure must consider emergent behaviors from cross-system interdependencies. Understanding these interdependencies is challenging due to high levels of integration in high-performance systems and their operation as a collaborative system-of-systems managed by multiple organizations. Existing modeling frameworks have limitations for strategic planning either because important spatial structure attributes have been abstracted out or behavioral models are oriented to shorter-term analysis with a static network structure. This paper presents a formal modeling framework as a first step to integrating infrastructure system models in a system-of-systems simulation addressing these concerns. First, a graph-theoretic structural framework captures the spatial dimension of physical infrastructure. An element's simulation state includes location, parent, resource contents, and operational state properties. Second, a functional behavioral framework captures the temporal dimension of infrastructure operations at a level suitable for strategic analysis. Resource behaviors determine the flow of resources into or out of nodes and element behaviors modify other state including the network structure. Two application use cases illustrate the usefulness of the modeling framework in varying contexts. The first case applies the framework to future space exploration infrastructure with an emphasis on mobile system elements and discrete resource flows. The second case applies the framework to infrastructure investment in Saudi Arabia with an emphasis on immobile system elements aggregated at the city level and continuous resource flows. Finally, conclusions present future work planned for implementing the framework in a simulation software tool.American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshi

    Federated Simulation and Gaming Framework for a Decentralized Space-Based Resource Economy

    Get PDF
    Future human space exploration will require large amounts of resources for shielding and building materials, propellants, and consumables. A space-based resource economy could produce, transport, and store resource at distributed locations such as the lunar surface, stable orbits, or Lagrange points to avoid Earth's deep gravity well. Design challenges include decentralized operation and management and socio-technical complexities not commonly addressed by modeling and simulation methods. This paper seeks to tackle these challenges by applying aspects of military wargaming to promote effective communication between decision-makers. A software architecture for federated simulation based on IEEE-1516 (HLA-Evolved) is presented in the context of multiple lunar in-situ resource production processes, resource depots, and intermediate transportation. The federation-level framework identifies interfaces between simulation models (federates), focusing on persistent assets (elements) and resources exchanged. Future work will develop the federated resource economy model and evaluate with decision-makers playing the roles of competing and collaborating players.United States. Dept. of DefenseUnited States. Air Force Office of Scientific ResearchAmerican Society for Engineering Education. National Defense Science and Engineering Graduate Fellowship (32 CFR 168a

    Comparative Usability Study of Two Space Logistics Analysis Tools

    Get PDF
    Future space exploration missions and campaigns will require sophisticated tools to help plan and analyze logistics. To encourage their use, space logistics tools must be usable: a design concept encompassing terms such as efficiency, effectiveness, and satisfaction. This paper presents a usability study of two such tools: SpaceNet, a discrete event simulation tool and a comparable spreadsheet-based tool. The study follows a randomized orthogonal design having within-subjects evaluation of the two tools with 12 volunteer subjects (eight subjects with space backgrounds, four without). Each subject completed two sessions of testing, each with a 30-45 minute tutorial and a two-part space exploration scenario. The first part tests the creation a model to verify a simple uncrewed mission to lunar orbit. The second part tests the evaluation of an existing model to improve the effectiveness of a crewed mission to the lunar surface. The subjects completed a questionnaire after each session and a semi-structured interview following the second session. The study results indicate that the SpaceNet tool is more efficient for portions of the model creation task including modeling multi-burn transports and the spreadsheet tool is more effective for the model evaluation task. Qualitative evaluation indicates subjects liked the graphical nature and error-detection of the SpaceNet tool, but felt it took too long to edit information and appeared as a “black box.” Subjects liked the ability to view the entire model state within the spreadsheet tool, however were concerned with limited dynamic state feedback and underlying modeling assumptions. Future tools should combine the best features, including allowing modification of the entire model from a single interface, providing visibility of underlying logic, and integrated graphical and error-checking feedback.United States. Dept. of DefenseUnited States. Air Force Office of Scientific ResearchAmerican Society for Engineering Education. National Defense Science and Engineering Graduate Fellowship32 CFR 168aSamsung Fellowshi

    Matrix Methods for Optimal Manifesting of Multinode Space Exploration Systems

    Get PDF
    http://www1.aiaa.org/content.cfm?pageid=318, Presented at the AIAA Space 2010 Conference and ExhibitionAnaheim, CA, 30 August–2 September 2010.This paper presents matrix-based methods for determining optimal cargo manifests for space exploration. An exploration system is defined as a sequence of in-space and on-surface transports between multiple nodes coupled with demands for resources. The goal is to maximize value and robustness of exploration while satisfying logistical demands and physical constraints at all times. To reduce problem complexity, demands are abstracted to a single class of resources, and one metric (e.g., mass or volume) governs capacity limits. Matrices represent cargo carried by transports, cargo used to satisfy demands, and cargo transferred to other transports. A system of equations enforces flow conservation, demand satisfaction, and capacity constraints. Exploration system feasibility is evaluated by determining if a solution exists to a linear program or network-flow problem. Manifests are optimized subject to an objective function using linear or nonlinear programming techniques. In addition to modeling the manifesting problem, a few metrics such as the transport criticality index are formulated to enable analysis and interpretation. The proposed matrix manifest modeling methods are demonstrated with a notional lunar exploration system composed of 32 transports, including eight cargo and nine crewed landings at an outpost at the lunar south pole and several surface excursions to Malapert Crater and Schrödinger Basin. It is found that carry-along and prepositioning logistics strategies yield different manifesting solutions in which transport criticality varies. For the lunar scenario, transport criticality is larger for a prepositioning strategy (mean value of 3.02), as compared with an alternative carry-along case (mean value of 1.99)

    Silk fibroin scaffolds with muscle-like elasticity support in vitro differentiation of human skeletal muscle cells

    Get PDF
    Human adult skeletal muscle has a limited ability to regenerate after injury and therapeutic options for volumetric muscle loss are few. Technologies to enhance regeneration of tissues generally rely upon bioscaffolds to mimic aspects of the tissue extracellular matrix (ECM). In the present study, silk fibroins from four Lepidoptera (silkworm) species engineered into three-dimensional scaffolds were examined for their ability to support the differentiation of primary human skeletal muscle myoblasts. Human skeletal muscle myoblasts (HSMMs) adhered, spread and deposited extensive ECM on all the scaffolds, but immunofluorescence and quantitative polymerase chain reaction analysis of gene expression revealed that myotube formation occurred differently on the various scaffolds. Bombyx mori fibroin scaffolds supported formation of long, well-aligned myotubes, whereas on Antheraea mylitta fibroin scaffolds the myotubes were thicker and shorter. Myotubes were oriented in two perpendicular layers on Antheraea assamensis scaffolds, and scaffolds of Philosamia/Samia ricini (S. ricini) fibroin poorly supported myotube formation. These differences were not caused by fibroin composition per se, as HSMMs adhered to, proliferated on and formed striated myotubes on all four fibroins presented as two-dimensional fibroin films. The Young's modulus of A. mylitta and B. mori scaffolds mimicked that of normal skeletal muscle, but A. assamensis and S. ricini scaffolds were more flexible. The present study demonstrates that although myoblasts deposit matrix onto fibroin scaffolds and create a permissive environment for cell proliferation, a scaffold elasticity resembling that of normal muscle is required for optimal myotube length, alignment, and maturation

    Plant traits poorly predict winner and loser shrub species in a warming tundra biome

    Full text link
    Climate change is leading to species redistributions. In the tundra biome, shrubs are generally expanding, but not all tundra shrub species will benefit from warming. Winner and loser species, and the characteristics that may determine success or failure, have not yet been fully identified. Here, we investigate whether past abundance changes, current range sizes and projected range shifts derived from species distribution models are related to plant trait values and intraspecific trait variation. We combined 17,921 trait records with observed past and modelled future distributions from 62 tundra shrub species across three continents. We found that species with greater variation in seed mass and specific leaf area had larger projected range shifts, and projected winner species had greater seed mass values. However, trait values and variation were not consistently related to current and projected ranges, nor to past abundance change. Overall, our findings indicate that abundance change and range shifts will not lead to directional modifications in shrub trait composition, since winner and loser species share relatively similar trait spaces

    An estimate of the number of tropical tree species

    Get PDF
    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e. at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa

    Helios Is Associated with CD4 T Cells Differentiating to T Helper 2 and Follicular Helper T Cells In Vivo Independently of Foxp3 Expression

    Get PDF
    Although in vitro IL-4 directs CD4 T cells to produce T helper 2 (Th2)-cytokines, these cytokines can be induced in vivo in the absence of IL-4-signalling. Thus, mechanism(s), different from the in vitro pathway for Th2-induction, contribute to in vivo Th2-differentiation. The pathway for in vivo IL-4-independent Th2-differentiation has yet to be characterized. - upregulate Th1 features - T-bet and IFN-γ - but not Helios. In addition, CD4 T cells induced to produce Th2 cytokines in vitro do not express Helios. The kinetics of Helios mRNA and protein induction mirrors that of GATA-3. The induction of IL-4, IL-13 and CXCR5 by alumOVA requires NF-κB1 and this is also needed for Helios upregulation. Importantly, Helios is induced in Th2 and TFh cells without parallel upregulation of Foxp3. These findings suggested a key role for Helios in Th2 and TFh development in response to alum-protein vaccines. We tested this possibility using Helios-deficient OTII cells and found this deficiency had no discernable impact on Th2 and TFh differentiation in response to alumOVA.Helios is selectively upregulated in CD4 T cells during Th2 and TFh responses to alum-protein vaccines in vivo, but the functional significance of this upregulation remains uncertain

    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment

    Get PDF
    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.Peer reviewe

    Carbon Sequestration by Perennial Energy Crops: Is the Jury Still Out?

    Get PDF
    corecore