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ABSTRACT 

Future human space exploration will require large amounts of resources for shielding 

and building materials, propellants, and consumables. A space-based resource 

economy could produce, transport, and store resource at distributed locations such as 

the lunar surface, stable orbits, or Lagrange points to avoid Earth‟s deep gravity well. 

Design challenges include decentralized operation and management and socio-

technical complexities not commonly addressed by modeling and simulation methods. 

This paper seeks to tackle these challenges by applying aspects of military 

wargaming to promote effective communication between decision-makers. A 

software architecture for federated simulation based on IEEE-1516 (HLA-Evolved) is 

presented in the context of multiple lunar in-situ resource production processes, 

resource depots, and intermediate transportation. The federation-level framework 

identifies interfaces between simulation models (federates), focusing on persistent 

assets (elements) and resources exchanged. Future work will develop the federated 

resource economy model and evaluate with decision-makers playing the roles of 

competing and collaborating players. 

INTRODUCTION 

A key challenge in future human space exploration is accommodating resources to 

sustain human life and operations at distant locations. The major sources of mass in 

exploration include propellant, habitats and radiation shielding, and consumables. 

Even with advantages of partially-closed environmental control systems and some 

propellant production on the Martian surface, NASA Design Reference Architecture 

5.0 (chemical propulsion variant) requires twelve heavy-lift (120 metric ton) launch 

vehicles (Drake, 2009). This expense is due to the energy required to transition 

between deep gravity wells – each kilogram making the round-trip journey requires 

over 200 kilograms of propellant (see Appendix for details). 

One approach to reduce the cost of exploration is to limit the burden of logistics 

supply from Earth‟s surface. In particular, a distributed set of systems could 

collaborate in a space-based economy focused on the production, transportation, and 

storage of critical resources such as water, oxygen, or energy at intermediate 
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locations such as the lunar surface, stable orbits in cis-lunar space, or Lagrange points 

(Ishimatsu, 2011). Aside from technical feasibility, decentralized control and the 

socio-technical complexities involved make this concept challenging to architect. 

There is active interest in enabling multi-national and commercial enterprises 

supporting future space exploration (Griffin, 2011). In part, these ventures will be 

competitive (e.g. national prestige or commercial contracts), but they will also be 

collaborative given the high costs and complexity of space exploration. Within the 

scope of a space-based resource economy, there could be many organizations 

responsible for distributed component systems (see Table 1). 

Table 1. Space-based Resource Economy Components 

Component Purpose Example(s) 

Human exploration 

mission 

Advance knowledge by exploring 

new and distant locations. 

Vostok 1 (RKA), Apollo 11 

(NASA), Shenzhou 5 (CNSA) 

Launch vehicle Transport humans or resources 

from Earth‟s surface to orbit. 

Delta IV (ULA), Falcon 9 

(SpaceX), Proton M (RKA) 

In-space vehicle Transport humans or resources 

between locations in space. 

Cygnus (Orbital), HTV 

(JAXA), ATV (ESA) 

Habitat/depot House humans or store resources 

in space or on a planetary surface. 

Zvezda (RKA), Shenzhou-

Tiangong (CNSA) 

Descent/ascent vehicle Transport humans or resources 

between the surface and space. 

Soyuz (RKA),  

Lunar Module (NASA) 

Surface vehicle Transport humans or matter 

between surface locations. 

Lunar Rover (NASA), 

ATHLETE (NASA) 

Communications link Transfer information between 

locations. 

CDSCC (Deep Space 

Network), DirecTV-10 

(DirecTV), USA-164 (Milstar) 

Resource plant Produce or transform resources. In-situ resource production, 

Solar arrays, Fuel cell 

A space-based resource economy fits the two distinguishing characteristics of system-

of-systems: operational and managerial independence of the components (Maier, 

1998). Operational independence, the ability for each component system to operate if 

disassembled from the larger system, is inherent to the large time and distance scales 

involved in space exploration. Managerial independence is illustrated by multi-

national and commercial entities with no single organization having absolute 

authority. A key challenge of architecting a system-of-systems is the lack of central 

control in the component system design and operation. 

A space-based resource economy is also classifiable as a complex, large-scale, 

interconnected, open, and socio-technical (CLIOS) system (Dodder, 2003). Although 

the spacecraft and resource systems are complex (internal complexity), as are the 

interactions within and between systems (behavioral complexity), there are also 

significant social complexities. In particular, the stakeholders developing each 

component system exhibit preferences motivated by their own value proposition 

(evaluative complexity) and their decisions exist within a larger, institutional sphere 



of policy and inter-organizational dynamics (nested complexity). These four aspects 

of complexity are illustrated in Figure 1.  

 
Figure 1. Complexities in CLIOS Systems 

Influencing future space exploration will require sophisticated planning and, without 

resources to experiment and prototype with real systems, models play an important 

role. Interactive simulation and gaming solicits the participation of human decision-

makers to allow the consideration of both technical (internal and behavioral) and 

social (evaluative and nested) complexities. To support this concept, we look to the 

use of simulations and games within a related domain: the military. 

WARGAMING AND FEDERATED SIMULATION 

Military planning and strategy is an ancient field of study aided in modern times with 

the application of science and computation. Wargaming provides decision-makers 

with an integrated experience to learn and discuss decisions without the cost or risk of 

live field exercises. It is differentiated from technical analysis in that, although 

rigorous physics-based and empirical models are incorporated, wargaming will not 

produce a “quantitative or logical dissection of a problem” but, rather, is “an exercise 

in human interaction, and the interplay of human decisions” (Perla, 1990:164). 

Wargames are described as “a unique forum for communicating ideas in vivid and 

memorable ways, and for discussing the validity and applicability of those ideas in a 

more empirical and less abstract way” (Perla, 1990:9). Thus, wargames support 

effective communication, a contributing factor to system-of-systems design, which is 

described as “an exercise in communications architecting” (Maier, 1998). 

Military systems have similar characteristics to a space-based resource economy: 

both are system-of-systems having strong social and technical complexities. Although 

space exploration doesn‟t have a clear antagonist, natural uncertainties and the 

balance between cooperation and competition between players is a source of conflict. 

More broadly, the definition of a game as “an activity among two or more 

independent decision-makers seeking to achieve their objectives in some limiting 

context” (Abt, 1970), fits the type of problem we seek to investigate and applying the 

designs of wargames may be beneficial. 
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There are a wide variety of wargaming designs, one being the computer-assisted 

wargame in which human players presented with a scenario make decisions and 

software models support the propagation of effects in time and space. Federated 

simulation allows multiple system simulations (federates) to be developed 

independently with encapsulated details, mirroring the decentralized design and 

operation of a system-of-systems. HLA-Evolved (IEEE Std. 1516-2010) is a software 

architecture for federated simulation, developed for the military but recently applied 

to other domains including space exploration (Essilfie-Conduah et al., 2011). 

A federated simulation consists of multiple federates exchanging data over an 

information network, illustrated in Figure 2. Data formats for encoding and decoding 

complex data types and high-level behaviors and regulations are defined in a 

federation agreement. Network-level communication is managed by a runtime 

infrastructure (RTI), a software application provided by a vendor that implements the 

requirements of the HLA-Evolved standard. Each federate sends and receives data 

through an application-level interface managed by the local RTI component (LRC). A 

central RTI component (CRC) manages federation-level processes such as time 

management and message routing. 

 
Figure 2. HLA-Evolved Federated Simulation 

Coupled with human interaction, federated simulation addresses both decentralized 

authority and socio-technical complexities inherent to each player associated with a 

space-based resource economy. Using concepts drawn from military wargaming and 

other modeling exercises, this paper seeks to address the following question: 

What federation-level modeling framework or architecture captures the interfaces 

between constituent systems within a space-based resource economy? 

First, to frame this question, we present a potential application case of federated 

simulation and gaming in developing a space-based resource economy with in-situ 

resource production on the lunar surface. 
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APPLICATION CASE 

Having lower gravity than Earth, the Moon may be a source of resources to support 

an economy. There is evidence that the lunar surface contains adequate quantities of 

critical resources such as silicon and iron metal oxides, water-ice, hydrogen, and 

exotic fuels like helium-3. Moreover, resources can be transformed to other forms 

with thermal and electric energy by several processes described in Table 2. 

Table 2. In-situ Resource Transformation Processes 

Process Basic Formula Notes 

Sabatier Reaction CO2 + 4H2  CH4 + 2H2O Elevated temperatures, Exothermic 

Bosch Reaction CO2 + 2H2  C + 2H2O Elevated temperatures, Endothermic 

Electrolysis 2H2O  2H2 + O2 Electricity required 

Hydrogen 

Reduction 
MOx + H2  M + H2O Elevated temperatures, Endothermic 

Carbothermal 

Reduction 
MOx + CH4  M + CO + 2H2 Elevated temperatures, Endothermic 

Methanation 

Reactor 
CO + 3H2  CH4 + H2O Elevated temperatures, Exothermic 

Given the processes available at a particular time, some resources are demanded as 

inputs and others are produced as outputs. Coupled with the demands for propellants 

(O2 and possibly H2 or CH4), human consumption (O2, H2O, and hydrocarbons) and 

waste (CO2, H2O, and hydrocarbons), and habitat and shielding (Fe, Si, and H2O), 

there are many potential resource economy architectures and deployment sequences. 

As illustrated in Figure 3, systems contributing to the resource economy include 

launch vehicles, in-space and ascent-descent transportation, in-situ processing plants, 

and resource depots such as at the first Earth-Moon Lagrange point (EML1).  

 
Figure 3. Lunar in-situ Resource Production Components 
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The design of each constituent system may have a large impact on the overall system-

of-systems. For example, consider the selection of ion versus chemical-based in-

space propulsion. Ion propulsion is much more efficient, though slower; however 

chemical engines could be refueled by the same propellant being produced. 

Additionally, there may be policies or incentives to promote collaboration where it is 

otherwise voluntary and not in the self interest of a particular player. 

Lifecycle properties such as availability or reliability of individual systems may also 

affect the overall performance of the resource economy, especially under uncertainty. 

If a resource production plant requires frequent human maintenance, demands from 

workers could overwhelm its resource production. 

Questions pertaining to the decentralized authority and socio-technical complexities 

addressed by a simulation and gaming approach for this scenario include: 

 What phases of build-up (staged deployment) can contribute to stable 

intermediate forms of a resource economy? 

 Are there key technologies, cost levels, or incentives that provide a tipping 

point for the viability of a resource economy? 

 How do availability and reliability of in-situ processing plants influence the 

function of a resource economy? 

To answer these questions, players would control simulation federates from the 

perspective of participating organizations. Repeated simulation executions coupled 

with discussion with other players would result in insights to the dynamics of the 

socio-technical system-of-systems and strategies for effective decisions. Similar to 

scenario analysis, games could target decisions made under different possible futures 

including varying available technology levels, commercial launch vehicle costs, 

number of players, and relative resource value. 

SIMULATION AND GAMING FRAMEWORK 

At the federation level, a simulation and gaming framework describes the interfaces 

between participating federates. Following the HLA-Evolved software architecture, it 

includes data models (attributes and parameters), object models (persistent entities), 

and interaction models (transient events). This division of models is discussed in the 

context of two related frameworks: SpaceNet and a functional system classification. 

SpaceNet is a discrete event simulation tool for space exploration logistics analysis 

(Grogan, 2010). Its modeling framework consists of a network (spatial locations and 

time-expanded connections), resources, elements, and events. The network and 

elements, both persistent entities in the simulation, correspond to object models. 

Resources are not uniquely determined (e.g. one doesn‟t know which kilogram of 

water is drawn from a tank), and are always attributes of another object (e.g. an 

element holds a quantity of resources), thus correspond to a data model. The events, 

of which there are seven core events (create, move, reconfigure, and destroy elements 

and add, transfer, and consume resources) correspond to interaction models. 



As another example, a matrix-based functional classification describes complex 

systems using five processes (transform, transport, store, control, and exchange) 

acting on five operands (matter, energy, information, living organisms, and finances) 

(de Weck et al., 2011:38-43). In this classification, the operands correspond to object 

models and the processes correspond to interaction models. In particular, the 

transport, control, and exchange processes take place across federate boundaries 

whereas the transform and store processes would take place within a single federate. 

Building on these concepts, the simulation and gaming framework uses data models 

for resources, object models for elements and players, and interaction models for 

events between federates such as resource exchange and transportation of elements. 

The resource data model includes the amount and type of resource represented (e.g. 

water, oxygen, or more abstract based on a class of supply such as “consumables”). 

As a data model, resources exist as attributes of objects or parameters of interactions. 

Some resource types, such as electricity or money, are not measured in mass-based 

units, so each resource should also define its units of measurement. Examples of 

resources include 7.1 kilowatt hours of electricity, 2.0 kilograms of consumables, and 

1.2 liters of water. 

The element object contains an attribute identifying the quantity of resources it 

contains. For example, an in-space vehicle may contain propellant available for 

propulsion, which may be decreased during a burn or increased upon refueling 

refueled during a simulation. Other elements may internally transform between types 

resources to change their contents – an electrolysis system may start with a quantity 

of water and over time transform it to oxygen and hydrogen. 

Since a player may command more than one element under a particular organization, 

a player object maintains the account balance measured in monetary resources. Any 

monetary resources exchanged by a player‟s elements are transferred to the account 

balance. Some scenarios may also use an environment object, controlled by a non-

player federate, to identify attributes external to the resource economy boundary, 

such as market prices, resource concentrations, or natural effects. 

Interaction models must be negotiated between players as a two-step request and 

response process. One player requests an interaction, and only if the other responds 

affirmatively, does the interaction take place. The element transport interaction 

describes the transportation of elements to a destination by a carrier, such as 

performed by a launch vehicle, in exchange for resources. The resource exchange 

interaction describes the simultaneous exchange of resources between two co-located 

elements. For example, a resource exchange at a propellant depot may trade 

propellant for money. Within this framework, interactions occur instantaneously, 

however given additional parameters, transports and exchanges may be scheduled for 

repeated, or multiple executions. 



CONCLUSION 

A space-based resource economy seeks to establish a decentralized system-of-

systems to produce, transport, and store resources to reduce the logistics burden of 

future space exploration. Design challenges include decentralized authority of the 

constituent systems and socio-technical complexities of multi-national and 

commercial ventures, motivating new methods and tools to evaluate concepts in an 

integrative way. Federated simulation, developed in the military domain and applied 

through wargaming, inherently models a system-of-systems, and when coupled with 

human players, can promote effective communication between decision-makers 

addressing some of the social complexities in the design of a resource economy. 

The federation-level simulation and gaming framework consists of data, object, and 

interaction models to capture the resources, players and elements, and interactions 

between federates taking place during the simulation. Future development will seek 

to develop federate-specific models and a federation agreement based on the 

application case of a lunar in-situ resource economy. Individual federate models will 

include launch vehicles, in-space and ascent-descent transportation, resource depots, 

and resource production plants using multiple transformational processes. 

As the framework is matured through application cases and prototypes, an application 

programming interface (API) will be developed to provide shared functionality such 

as data structures and logical validation per the federation agreement across the 

individual federates to simplify their development. Beta testing with volunteer 

subjects and a simplified scenario based on the lunar in-situ resource economy is 

targeted for spring 2012, followed by more detailed scenario development and 

evaluation using representative players in the summer and fall 2012. 

The challenging of developing an infrastructure system-of-systems is not limited to 

the domain of space exploration. Indeed, human exploration to remote destinations 

can be seen as the ultimate test of sustainability, a rich topic in earthbound 

civilization. The objective of future work is to extend the modeling framework to 

terrestrial domains as a method of “strategic engineering gaming,” specifically 

targeting infrastructure system-of-systems. 
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APPENDIX: PROPELLANT RATIO CALCULATION 

To find the mass of propellant to transport one unit of mass along a transport segment 

we define the propellant-to-mass ratio, r shown in Eq. (1): 
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where m0 is the initial stack mass, and m1 is the final stack mass. Using the ideal 

rocket equation, shown in Eq. (2): 
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where Isp is the rocket specific impulse, g0 is the gravitational acceleration at Earth‟s 

surface (i.e. 9.81 m/s
2
), and ΔV is the desired change in velocity, we can rearrange to 

solve for r, shown in Eq. (3): 
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The cumulative propellant-to-mass ratio, R, for a sequence of transports {1…N} is 

found using Eq. (4):  

    1111 ,0,0 
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The round-trip journey between Earth and Mars is comprised of six phases, shown in 

Table 3. Each phase has a ΔV determined by astrodynamics and an Isp determined by 

vehicle design. The launch has three stages with varying Isp, and approximate ΔV 

split: PBAN first stage (270 s), LOX/LH2 second stage (415 s), and LOX/LH2 upper 

stage (450 s). The in-space phases use LOX/LH2 engines similar to the upper stage 

(450 s) and the ascent and descent phases use LOX/LCH4 engines (370 s). 

Table 3. Mars Mission Propellant-to-Mass Ratios 

i Mission Phase ΔV (m/s) Isp (s) r (-) R (-) 

1 Earth Launch (3 Stages) 9800 - 11.15 230.8 

1.1 First Stage 1200 270 0.56 11.1 

1.2 Second Stage 5100 415 2.51 6.8 

1.3 Third Stage 3500 450 1.21 1.2 

2 Earth Departure (TMI) 4100 450 1.53 18.1 

3 Mars Arrival (MOI) 1700 450 0.47 6.5 

4 Mars Descent 600 370 0.18 4.1 

5 Mars Ascent 4100 370 2.09 3.3 

6 Mars Departure (TEI) 1500 450 0.40 0.4 

The resulting cumulative propellant-to-mass ratio is about 230. Alternative designs 

using nuclear thermal rockets (NTRs) for in-space transport (achieving specific 

impulses between 875-950 s) and aerobraking in lieu of a Mars arrival burn could 

reduce the cumulative propellant-to-cargo ratio for a Mars mission to about 80, 

however these options also have higher costs of fuel and vehicles. 
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