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Abstract

Background: Although in vitro IL-4 directs CD4 T cells to produce T helper 2 (Th2)-cytokines, these cytokines can be induced
in vivo in the absence of IL-4-signalling. Thus, mechanism(s), different from the in vitro pathway for Th2-induction,
contribute to in vivo Th2-differentiation. The pathway for in vivo IL-4-independent Th2-differentiation has yet to be
characterized.

Findings: Helios (ikzf2), a member of the Ikaros transcription regulator family, is expressed in thymocytes and some antigen-
matured T cells as well as in regulatory T cells. It has been proposed that Helios is a specific marker for thymus-derived
regulatory T cells. Here, we show that mouse ovalbumin-specific CD4 (OTII) cells responding to alum-precipitated
ovalbumin (alumOVA) upregulate Th2 features - GATA-3 and IL-4 - as well as Helios mRNA and protein. Helios is also
upregulated in follicular helper T (TFh) cells in this response. By contrast, OTII cells responding to the Th1 antigen - live
attenuated ovalbumin-expressing Salmonella - upregulate Th1 features - T-bet and IFN-c - but not Helios. In addition, CD4 T
cells induced to produce Th2 cytokines in vitro do not express Helios. The kinetics of Helios mRNA and protein induction
mirrors that of GATA-3. The induction of IL-4, IL-13 and CXCR5 by alumOVA requires NF-kB1 and this is also needed for
Helios upregulation. Importantly, Helios is induced in Th2 and TFh cells without parallel upregulation of Foxp3. These
findings suggested a key role for Helios in Th2 and TFh development in response to alum-protein vaccines. We tested this
possibility using Helios-deficient OTII cells and found this deficiency had no discernable impact on Th2 and TFh
differentiation in response to alumOVA.

Conclusions: Helios is selectively upregulated in CD4 T cells during Th2 and TFh responses to alum-protein vaccines in vivo,
but the functional significance of this upregulation remains uncertain.
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Introduction

CD4 T helper 2 (Th2) cells are protective when they control

immunity to extracellular parasites but their involvement in

allergic inflammatory responses shows they can also be

pathogenic. The canonical Th2-cytokine is IL-4 which is often

produced with IL-5 and IL-13 and the genes encoding these 3

cytokines are located in a contiguous gene cluster [1–3]. There

are still gaps in our understanding of how CD4 Th2 cells are

induced in vivo [4]. To get insight into the specific features and the

signalling pathway(s) that operate(s) in vivo we studied Th2-

differentiation of naı̈ve ovalbumin (OVA)-specific transgenic

CD4 T (OTII) cells that had been transferred into wild-type

congenic mice. Alum-precipitated ovalbumin (alumOVA) was

used to induce the Th2-associated transcription factor GATA-3

and IL-4, while live attenuated ovalbumin-expressing Salmonella

(SalOVA) was used to induce Th1-associated T-bet and IFN-c. a

previous report from our laboratory extensive analysis of the

diversity of these different CD4 T cell responses was made by

using low-density, real-time RT-PCR microfluidic cards [5]. One

of the novel outcomes of this study was that, by 3 days after

immunization, the transcription regulator Helios was induced in

OTII cells in response to alumOVA but, not to SalOVA. The

objective of the current report is to assess whether this selective

expression of Helios is strictly associated with Th2 cells

differentiated in vivo.
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Helios (Ikzf2) belongs to the Ikaros transcription factor family that is

made up of five DNA-binding proteins; Ikaros, Helios, Aiolos, Eos and

Pegasus [6]. These transcription factors contain two sets of highly

conserved C2H2 zinc fingers motifs. At the N terminus, four zinc

fingers are responsible for sequence-specific DNA binding, while at the

C terminus two zinc fingers enable homodimeric or heterodimeric

interactions between family members [7,8]. Ikaros, Helios and Aiolos

expression is restricted to cells of the hematopoietic system, whereas

Eos and Pegasus are more widely expressed [9,10]. Ikaros and Aiolos

are involved in many aspects of B cell differentiation and functions

[11–17]. Ikaros also appears to be important during T cell

development, and its absence leads to increased double-negative,

stage 4, thymocyte proliferation [18,19]. In mature T cells, Ikaros has

been reported both to regulate Th2 commitment and silence Th1

differentiation [20–22]. In addition, Eos mediates gene silencing in

regulatory T cells (Tregs) in a Foxp3-dependent manner [23]. Finally,

Helios is highly expressed at early stages of thymocytes development

[9,24]. In mature T cells, Helios expression has been strongly

associated with Tregs by several groups [25–30]. Helios has also been

observed in a very small number of non-characterized splenic

germinal centers cells [9]. By dimerizing with Ikaros, Helios potentially

controls its epigenetic function by altering the intracellular localization

of Ikaros [9,24,31]. This suggests a possible role for Helios in the

acquisition of selective functions by peripheral CD4 T cells.

Helios expression has also been associated with naturally

occurring regulatory T cells [27], but we show that Helios

upregulation in the context of the response to alumOVA occurs

independently of Foxp3 expression. Finally, we generated Helios-

deficient OTII cells and used these to probe the role of Helios in

the acquisition of Th2-features in response to alumOVA.

Results

Helios is selectively expressed in CD4 T cells committing
to Th2 differentiation

Our previous studies show that CD4 OTII cells primed to

SalOVA or alumOVA respectively acquire Th1 and Th2 features

as early as 3 days after immunization. These studies also suggest that

Helios expression is selectively associated with Th2 differentiation

[5]. To confirm these findings, chimeric mice were constructed by

transfer of CFSE-labelled CD45.1+ OTII cells into congenic wild-

type CD45.2+ recipients. The day after cell transfer chimeras were

immunized in both footpads, with either SalOVA or alumOVA and

7 days after immunization OTII cells were FACS-sorted from the

draining popliteal lymph node (LN) (Fig. 1A). Real-time RT-PCR

shows the sorted OTII CD4 T cells responding to alumOVA

selectively express high levels of IL-4, GATA-3 and Helios mRNA

(Fig. 1A). By contrast, OTII cells responding to SalOVA acquire

Th1 features, expressing high levels of IFN-c and T-bet but not

Helios mRNA (Fig. 1A). Importantly, SalOVA- and alumOVA-

primed OTII cells express both Ikaros and Aiolos mRNA to similar

levels. Thus, Helios mRNA is induced in OTII cells responding to

alumOVA but not to SalOVA (Fig. 1A and [5]).

We next tested whether the selective association of IL-4 with

Helios expression occurs in response to another antigen that

induces differentiation of naı̈ve CD4 T cells to Th2 cells. To this

end we immunized mice with FliC, a subunit of the Salmonella

flagellar protein – flagellin. In addition to being the target for

specific immune recognition by T and B cells, FliC is a ligand for

TLR-5 and it induces a strong Th2 response [32,33]. WT mice

were immunized intraperitoneally with FliC and 7 days later high

levels of IL-4 and Helios mRNA were found in FACS-sorted

CD4+CD62Llo (primed) splenocytes (Fig. 1B). By contrast these

mRNAs were not present in the CD4+CD62L+ (naı̈ve) population.

Thus, Helios mRNA is upregulated in splenic and LN CD4 T cells

responding to at least two types of Th2 antigens.

Kinetics of Helios expression in OTII cells responding to
alumOVA mirrors GATA-3 expression

We next set out to identify the proportion of OTII cells that

upregulate Helios at successive stages in the response to alumOVA.

Again CFSE-labelled OTII cells were transferred into congenic wild-

type mice and these chimeras were immunized in the footpads with

alumOVA. Three days after immunization single OTII cells were

Figure 1. Helios mirrors IL-4 mRNA expression in CD4 T cells
responding to Th2-antigens in vivo. A) One day after receiving
CD45.1+ OTII cells groups of congenic CD45.2+ B6 mice were immunized
either with SalOVA or alumOVA in both footpads. Seven days later
popliteal LN cells were taken and OTII cells were sorted on the basis of
CD4 and CD45.1 expression. The right hand graphs marked OTII show the
purity of the sorted cells, which were used to prepare cDNA. The bar
charts show IL-4, GATA-3, IFN-c, T-bet, Helios, Ikaros and Aiolos mRNA
levels +SD, assessed by real-time PCR relative to the level of b2-
microglobulin mRNA. The data are representative of 2 independent
experiments with a total of 4 mice. The Mann-Whitney 2-tailed test was
used to estimate the significance of differences between groups:
* = p,0.05, NS = not significant. B) C57BL/6 mice were immunized with
the flagellin subunit FliC intraperitoneally. Seven days later CD4 T
splenocytes were FACS-sorted as naı̈ve (CD62L+) and primed (CD62Llo)
cells. The relative amounts of IL-4 and Helios mRNA were determined by
real-time RT-PCR relative to the level of b2-microglobulin mRNA. The data
are representative of 2 independent experiments with 8 mice in total.
doi:10.1371/journal.pone.0020731.g001

Helios Marks In Vivo Differentiated CD4 Th2 Cells
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FACS-sorted from the popliteal LN as a function of CD69 expression

and the number of cell division accomplished (Fig. 2A). In this way

individual cells at different stages of the response were obtained: (i)

cells that had upregulated CD69, but had not yet started to divide

(termed 0 division in Fig. 2); (ii) cells that had divided 2–3 times based

on CFSE dilution (2–3 divisions); and (iii) cells that had divided 6

times (6 divisions). Naı̈ve single OTII cells from the popliteal LN of

chimeras that had not been immunized were also studied. Levels of

mRNA for IL-4 and related transcription factors were then

determined by real-time RT-PCR in the single cells derived from

each of these 4 OTII subsets (Fig. 2A). The transcriptional regulators

involved in Th2 development that we analyzed were – GATA-3

[34,35], c-Maf [36–39], Ikaros [20,22], and NF-kB1 [40–42].

Helios mRNA, in contrast to the other transcription factors, is

expressed in fewer than 2% of the naı̈ve OTII cells, but is already

induced in 30% of CD69+ OTII cells that have not yet divided (0

division) (Fig. 2A). The proportion of cells expressing Helios then

increases linearly through to 6 cell divisions. GATA-3 mRNA is

present in approximately 20% of naı̈ve OTII cells (Fig. 2A). This

proportion rises to 40% in the CD69+ OTII cells that had not

divided. Some 80% of primed OTII cells that have completed 2–3

divisions express GATA-3, and this expression is maintained through

6 divisions. The profile of c-Maf expression is similar although this

transcription regulator is present in a higher proportion of naı̈ve cells

(40%). Ikaros and NF-kB1 are constitutively expressed in 60–70% of

naı̈ve OTII cells and this is rapidly up-regulated in the remaining

OTII cells following immunization. As previously reported IL-4

mRNA expression is not seen prior to cell division [43], but becomes

apparent in some 7% of the OTII cells that have undergone 6

divisions. A similar proportion of IL-4-secreting OTII cells express

intracellular IL-4 protein at this stage (see Refs [44–46] and Fig. 3C).

Helios and GATA-3 mRNA expression were respectively seen in

88% and 82% of the OTII cells induced to express IL-4 mRNA

(Fig. 2B). We were unable to determine if the few IL-4-producing cells

that did not contain Helios or GATA-3 had expressed these

transcription factors earlier in the response.

We went on to assess whether the proportion of OTII cells

expressing Helios and GATA-3 mRNA was related to the

proportion of cells expressing these transcription factors at the

protein level (Fig. 3). The proportion of OTII cells with GATA-3

and Helios proteins is shown in relation to the number of cell

divisions induced by alumOVA in Fig. 3A. This shows that

kinetics of upregulation of both of these proteins parallels the

upregulation of their mRNA, as shown in Fig. 2A. In addition,

more than 80% of Helios-expressing OTII cells also express

GATA-3 (Fig. 3B). Overall these results show similar timing and

frequency of Helios and GATA-3 mRNA and protein expression

during this Th2 response.

OTII cells induced to express Helios by alumOVA do not
express Foxp3

Helios expression has been associated with naturally occurring

regulatory T cells [27]. For this reason we went on to assess if the

OTII cells that have been induced to express Helios by alumOVA

Figure 2. Transcription factor mRNA related to IL-4 induction in single alumOVA-responding OTII cells. C57BL/6 mice received CFSE-
labelled OTII cells and were then immunized with alumOVA in both footpads. Three days later flow cytometry was used to analyze and sort single
cells from the draining LN. A) The dot plots in the top row are gated on CD4 T cells and show the CD69 expression as a function of OTII cell
proliferation. Naı̈ve LN cells from a group of non-immunized chimeras were used as controls. Histograms show the populations of single OTII cells
from popliteal LN isolated as follows: 1) naı̈ve OTII cells, 2) OTII cells that had not divided, but were CD69+ (0 division), 3) OTII cells that had completed
2–3 divisions, 4) OTII cells that had completed 6 divisions. Histograms show the purity of the sorted OTII cells (black lines) within the initial OTII
population (filled grey). The lower set of graphs show the percent of single cells expressing b2-microglobulin mRNA that also express IL-4 or
transcription factor mRNA as quantified using a duplex RT-PCR in the populations of naı̈ve and responding OTII cells defined above. b2-microglobulin
expression indicated more than 90% of 154 wells from each sorted population contained a cell. B) Percent of single OTII cells that had divided 6 times
that expressed b2-microglobulin mRNA simultaneously with either GATA-3 (left panel) or Helios (right panel) as quantified by a triplex RT-PCR. The
results in A & B are shown for 2 to 3 independent experiments respectively represented by open, grey and black symbols.
doi:10.1371/journal.pone.0020731.g002

Helios Marks In Vivo Differentiated CD4 Th2 Cells
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also express Foxp3. Again the LN response of CFSE-labelled

OTII cells was evaluated. OTII cells were identified by their

CFSE content as CD4+ CFSE+ cells (Fig. 4). Three days after

chimeras were immunized with alumOVA a mean of 48%613 of

the OTII cells in the draining LN contained Helios. Within the

OTII population very few (1.7%61.5) co-expressed Helios and

Foxp3. Thus, the majority of the Helios+OTII cells are Foxp32.

As reported in Ref [27], 84%64 of the 14%61 of endogenous

CD4 T cells that expressed Foxp3 are also Helios positive. These

data show that almost all of OTII cells responding to alumOVA

that are induced to express Helios do so in a different manner

from that of naturally occurring regulatory T cells.

Helios is induced in both TFh cells and other CD4
effectors responding to alumOVA

Upon immunization CD4 T cells first encounter antigen

presented on the surface of dendritic cells in the T zone near

high endothelial venules (HEV). By 72 h the expression of

CXCR5 enables a proportion of the responding CD4 T cells to

migrate into the B follicles [44,46]. These migrant cells are TFh

required for the selection of B cells in germinal centers (GC) and

for inducing the selected B cells to differentiate into plasma cells,

memory B cells or centroblasts [47]. CXCR5highCCR7low T cells

have been found to have elevated IL-4 and PD-1 transcript

expression [48] and GC are the focus of IL-4 production during

Th2-responses [49–51].

To test if Helios is expressed in TFh cells, seven days after

immunizing a further set of chimeras with alumOVA PD-

1+CXCR5+ TFh cells and PD-12CXCR52 other effector (OEf)

cells were sorted from the draining LN (Fig. 5A). Largely non-

responding endogenous CD45.12 CD4 T cells were also sorted as

controls. Real-time RT-PCR shows that both TFh and OEf OTII

cells significantly upregulate IL-4 at the population level compared

to endogenous CD4 T cells. Nevertheless, TFh OTII cells produce

significantly more IL-4 mRNA than in the OEf OTII cells

(Fig. 5B). Changes in the expression of transcription factors

associated with TFh or Th2 differentiation or both of these are

also shown in Fig. 5B. As expected, OEf OTII cells were found to

contain significantly more GATA-3 mRNA than TFh OTII cells,

and TFh OTII cells strongly express BCL6 mRNA whereas OEf

OTII cells do not. There are no major differences in c-Maf, NF-

kB1, and Ikaros between TFh and OEf OTII cells. Finally, as

Figure 3. Transcription factor and IL-4 protein expression in single alumOVA-responding OTII cells. C57BL/6 mice received CFSE-
labelled, or not, OTII cells and were then immunized with alumOVA in both footpads. Three days later flow cytometry was used to analyze the
expression of transcription factor and IL-4 proteins in OTII cells from the draining LN. A) Dot plots gated on CD4 T cells show GATA-3 and Helios
protein expression in the draining LN suspensions as a factor of CFSE dilution. Cells to the left of the vertical quadrant bar are CFSE2 endogenous
CD4 T cells. Histograms on the right of each dot plot show the proportions of OTII cells that had completed the indicated number of divisions and
express either GATA-3 (top) and Helios (bottom). Each line represents results from one mouse. Data are representative of 2 independent experiments.
The graph on the right hand shows the proportion of OTII cells from each of 8 mice expressing GATA-3 or Helios. B) The dot plot shows the co-
expression of Helios and GATA-3 proteins by OTII cells. The graph on the right shows that more than 80% of the OTII cells from each of 8 mice that
are positive for Helios also express GATA-3. C) The proportion of IL-4-producing cells within the OTII cells after 5 h restimulation in vitro with OVA-
peptide was assessed by intracellular flow cytometry as shown in the dot plot. The graph shows the proportions of cells in the responding LN from 8
mice that expressed IL-4. The data in B–C) are representative of 3 independent experiments.
doi:10.1371/journal.pone.0020731.g003

Helios Marks In Vivo Differentiated CD4 Th2 Cells
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expected, Foxp3 is expressed at much lower levels in the

responding OTII cells than in endogenous CD4 T cells.

Both TFh and OEf OTII cells have significantly more Helios

mRNA than the endogenous CD4 T cells, but the trend for TFh

to express more Helios than OEf was not significant. To clarify

this, we have compared Helios protein expression in OEf and TFh

OTII cells with that in non-responding endogenous CD4 T cells

excluding regulatory T cells as they express high level of Helios

(Fig. 5C). This shows that TFh OTII cells reproducibly and

significantly express higher level of Helios than OEf and these in

turn express more Helios than the non-responding CD4 T cells

other than regulatory T cells.

Helios, like IL-4 and IL-13, requires NF-kB1 for its
induction in CD4 T cells by alumOVA

NF-kB1-deficient mice are impaired in Th2 responses including

experimental allergic airway inflammation and intestinal helminth

infection [40–42,52,53]. In addition, we have recently published

evidence that the induction of IL-4, IL-13 and CXCR5 by alum-

protein vaccine is under NF-kB1 control [54]. On the other hand,

NF-kB1-deficient CD4 T cells still become effectors that

upregulate IL-2, IL-21 and IFN-c mRNA and provide help for

extrafollicular antibody responses. To test if NF-kB1-deficiency in

CD4 T cells selectively affects Helios upregulation, chimeras were

constructed by transferring either NF-kB1+/+OTII cells or NF-

kB12/2OTII cells into wild-type congenic recipients. Three days

after footpad immunization with alumOVA NF-kB1+/+OTII cells

from the draining node expressed 100 fold more IL-4 mRNA and

at least 1000 fold more IL-13 mRNA than NF-kB12/2OTII cells

(Fig. 6). NF-kB1+/+OTII cells expressed 10 fold more Helios

mRNA than NF-kB12/2OTII cells, while both Ikaros and Aiolos

were similarly expressed in the two cell types. Thus, optimal Helios

expression, like that of IL-4 and IL-13, requires NF-kB1-signaling.

Helios is not expressed during in vitro IL-4 directs CD4
Th2 cell polarization

Although, there are key molecules in CD4 T cells that are

upregulated and are involved in the induction of Th2 cytokine in

vivo, this does not necessarily imply that they are required in the in

vitro Th2-conditionned culture system. We carried out further

experiments to assess whether Th2-transcription factors are

induced when CD4 T cells are induced to produce Th2 cytokines

by being activated through their TCR in the presence of IL-4 in

vitro. As expected this treatment strongly upregulated GATA-3 and

IL-4 in the cultured cells (Fig. 7). By contrast neither Helios nor c-

MAF are induced, while NF-kB1 is modestly upregulated. These

findings further highlight the differences between in vitro and in vivo

responses that induce Th2 cytokines. The lack of Helios

upregulation in the IL-4-directed in vitro Th2-polarization may

explain why Helios2/2CD4 T cells secrete Th2 cytokines,

similarly than WT CD4 T cells, when polarized in IL-4-directed

in vitro stimulation [55].

Helios is not required for Th2 or TFh development in
responses to alumOVA

The data presented so far suggest Helios is a candidate

transcriptional regulator of Th2 and TFh differentiation in vivo at

least in response to alum-precipitated protein. To test if Helios is

required for the differentiation of CD4 T cells we next set up

studies to compare Th2 and TFh differentiation and function

induced by alumOVA in Helios+/+ or Helios2/2OTII cells.

These were transferred into wild type congenic mice and again

their response to footpad immunization with alumOVA was

followed.

Helios2/2 mice have been described elsewhere [55], briefly in

this mutant strain Helios lacks most of exon 7, including the

sequences that encode the C-terminal zinc finger domain that is

essential for dimerization. This deletion results in loss of Helios

protein. The homozygous Helios-deficient mice have a low

survival rate and the mutants die during the first week.

Exceptionally, when mice survive the critical first week, these

mice have normal differentiation and homeostasis of ab and cd T

cells, NK T cells and regulatory T cells. Because of the low survival

of Helios2/2 pups [55], we crossed heterozygous Helios+/2

mice with OTII mice to generate Helios+/2OTII+/2 mice. These

hybrids were then interbred and the resulting foetal liver cells

prepared from day 14 Helios2/2OTII+ embryos were used to

reconstitute lethally-irradiated congenic C57BL/6 mice and

generate Helios2/2OTII cells. CD45.2+ LN cells from

Helios+/+OTII+ or Helios2/2OTII+ chimeras were then prepared,

CFSE-labelled and transferred into CD45.1+ congenic wild-type

recipient mice.

Seven days after immunization with alumOVA no Helios

protein was detected by intracellular flow cytometry in the

Helios2/2OTII cells from the draining LN while about 50% of

the Helios+/+OTII cells express this transcription regulator

(Fig. 8A). The extent of proliferation and survival by Helios+/+

and Helios2/2OTII cells was comparable when assessed 7 days

after immunization (Fig. 8A&B). Helios-deficiency in OTII cells

did not alter the proportions and total numbers of effector

CD62LloCD44+ OTII cells, or theCXCR5+PD-1+ TFh OTII cells

generated (Fig. 8B).

Figure 4. OTII cells induced to express Helios by alumOVA do
not express Foxp3. C57BL/6 mice received CFSE-labelled OTII cells
and were then immunized with alumOVA in the footpads. Three days
later the draining LN were taken for analysis by flow cytometry of CFSE
content and the expression of Helios, and Foxp3 on endogenous CD4 T
cells and OTII cells. The top left dot plot shows the expression of CD4
and CFSE and its resolution into the central dot plot with Foxp3 and
CFSE content of cells in CD4 T cell gate. The bottom left dot plot shows
Foxp3 and Helios by Foxp3+ endogenous CD4 T cells that contain no
CFSE. The bottom right dot plot shows Foxp3 and Helios expression by
OTII cells captured in the CFSE+ CD4+ gate. The median percentages
and SD for the mice studied (2 independent experiments n = 8 in total)
are shown in each dot plot.
doi:10.1371/journal.pone.0020731.g004

Helios Marks In Vivo Differentiated CD4 Th2 Cells
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Helios deficiency in CD4 T cells does not modify their
capacity to provide help for follicular or extrafollicular
antibody response to alumOVA

We next set out to test the effect of Helios deficiency in antigen-

specific CD4 T cells on their capacity to support antibody

responses to alumOVA. The B cell response induced by this Th2-

inducing antigen is characterized by switching to IgG1 [32,56–60].

Alum-protein antigens injected subcutaneously selectively induce

processed c1 and e Ig heavy chain gene germline transcripts in the

draining LN. Productive switching to IgG1 occurs in these

responding nodes although there is very little switching to IgE in

these sites [32,57,58]. Non-immunized popliteal LN have few if

Figure 6. Helios and Th2 cytokine mRNA induction in CD4 T
cells by alumOVA requires NF-kB1. C57BL/6 mice received CFSE-
labeled NF-kB1+/+OTII cells or NF-kB12/2OTII cells and were then
immunized with alumOVA in both footpads. Three days later in vivo-
primed NF-kB1+/+ (black bars) or NF-kB12/2 (open bars) OTII cells were
FACS-sorted as CFSE+ CD4 T cells. The relative Th2-cytokine and Ikaros
family of transcription factor mRNA levels were determined by real-time
RT-PCR relative to b2-microglobulin mRNA expression. The data are
derived from 2 independent experiments with a total of 6 mice per
group. Mann-Whitney 2-tailed statistical probabilities of differences
between groups are indicated: NS = non significant, ** = p,0.01.
doi:10.1371/journal.pone.0020731.g006

Figure 5. Helios is induced in both T zone effector and
follicular helper OTII cells. A) Popliteal LN cell suspensions were
prepared from OTII cell chimeras immunized 7 days previously with
alumOVA in both footpads. The left hand FACS plot shows the
CD4+CD45.1+ OTII cells (black gate) and the largely non-responding
endogenous CD4+CD45.12 T cells (grey gate). The OTII cells were
sorted (right hand pair of dot plots) into TFh cells (CXCR5+PD-1+) and
other effector cells OEf (CXCR52PD-12). B) The relative amounts of
mRNA for IL-4 and a range of transcription factors was determined by
real-time RT-PCR. The values for cells from the responding LN from 8
mice in 3 experiments is shown in the graphs: Endogenous CD4 T cells
(black diamonds), OEf (grey diamonds), TFh (open diamonds). C) The
histogram shows the level of expression of Helios protein in the TFh
and OEf from a responding LN, sorted as in (A), compared with that by
endogenous FOXP3- CD4 T cells from the non-responding brachial of
the same mouse (sorted using gates shown in Fig 4). The graph shows
the geometric mean expressions in the same three populations in the
LN from each of 8 mice in 3 experiments. The symbols are as in (B).
Mann-Whitney 2-tailed statistical probabilities of differences between
the TFh and OEf OTII groups are indicated: NS = not significant,
* = p,0.05, ** = p,0.01, *** = p,0.001.
doi:10.1371/journal.pone.0020731.g005
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any plasma cells or GC, so the appearance of these features after

immunization is strong evidence of an induced response. In

addition, T cell help is limiting in the primary response to alum-

protein and by 7 day after immunization there are only modest

numbers of plasma cells induced. By contrast, the transfer of 106

OTII cells i.v. increases the 7 day plasma cell count by some 1000

fold and a high proportion of these plasma cells have switched to

IgG1 [59,60]. These considerations allowed us to assess the role of

Helios in the induction of help for antibody responses by the

transfer of Helios+/+ or Helios2/2OTII cells into wild type

congenic mice and observing the popliteal LN response to

alumOVA. The 7 day antibody response induced is shown in

Fig. 9. The numbers of germinal centre cells (Fas+GL7+B220+) and

plasmablasts and plasma cells (collectively CD138+) is comparable

in the two sets of chimeras (Fig. 9A). It will be seen that the IL-4,

c1 and e transcripts are all strongly induced in these LN (Fig. 9B).

There is no difference in the levels of IL-4 and e transcripts

induced between the Helios+/+ or Helios2/2OTII cell chimeras.

Paradoxically there is a borderline significant increase in the level

of c1 germline transcripts in the Helios2/2OTII cell chimeras.

This finding was not pursued further as the proportions of plasma

cells producing IgG1 were similar in the 2 sets of chimeras (Fig. 9C,

D). There was no increase in the low level of switching to IgG2a,

in the Helios2/2 chimeras. This indicates that there was no

alteration of polarization from Th2 to Th1 as switching to this

isotype is typically associated with Th1 responses (Fig. 9C, D).

Helios does not regulate the induction of Th2 cytokine
expression in CD4 T cells responding to alumOVA

Finally, we assessed the role of Helios in transferred OTII cells

in the induction of cytokines and transcription factors in response

to alumOVA in vivo. Again recipient mice received CFSE-labelled

Helios+/+ or Helios2/2OTII LN cells and were immunized the

next day with alumOVA in both footpads. In these experiments

the responding OTII cells were evaluated 3 days later. As

previously shown (Fig. 8A), the Helios2/2OTII cells do not

express Helios protein (Fig. 10A). In addition, the Helios+/+ or

Helios2/2OTII cells were FACS-sorted and assessed by real-time

RT-PCR for Helios mRNA detected with primers recognizing

either the junction between exons 4 and 5 or the deleted sequence

of exon 7 (Fig. 10B). This shows that Helios mRNA is not induced

in Helios2/2OTII cells. OTII cells expressed 1000 fold more IL-4

and 50 fold more IL-13 mRNA than the largely non-OVA-specific

and hence non-responding endogenous CD4 T cells (Fig. 10B).

Hence, the responses of the Helios+/+OTII cells are comparable to

those described in previous sections. Additionally, no obvious

difference was found between the responses of Helios+/+ and those

of Helios2/2OTII cells in relation to the production and

transcriptional control of Th2 or TFh cytokine production. Also,

the absence of Helios does not lead to the induction of the Th1

features - IFN-c or T-bet. These results indicate that Helios is

dispensable for the regulation of both Th2 and TFh cytokines and

transcription factors in response to alumOVA immunization.

Discussion

In mature hematopoietic cells, Helios expression is restricted to

T cells [9,24], suggesting that Helios may control important

aspects of T cell differentiation and/or function. Strikingly, the

kinetics of Helios expression mirrors that of GATA-3 with about

60% of alumOVA-primed OTII cells expressing Helios after 2–3

divisions. This is shown both at the mRNA and protein levels.

Other indirect evidence linking Helios with Th2 responses comes

from a genome wide association study. This identified Helios in a

sequence variant that correlates with high numbers of blood

eosinophils in asthma [61]. Our data also show that Helios

expression appears to be regulated by NF-kB1, a transcription

factor associated with Th2 responses [40–42,54].

We found that Helios is not induced in OTII cells responding to

the Th1 antigen SalOVA, while Ikaros and Aiolos are both

expressed to similar levels both in responses to SalOVA as well as

alumOVA. This is of interest, for following in vitro polarization of

activated CD4 T cells using IL-4, there was increased expression

of Il2, Ifnc, and Tnfa and decreased expression of Il4, and Il13 in

Ikaros2/2 CD4 T cells compared with wild-type CD4 T cells [20].

Ikaros is also important for IL-10 expression in T cells that have

undergone Th2 differentiation, and a decrease in IL-10 expression

in Ikaros2/2 CD4 Th2 cells was observed compared with their

wild-type counterparts [22]. Ikaros appears to participate in T cell

differentiation and maturation in other ways, for it also represses

IFN-c [21,22]. At a molecular level, in Th2 cells derived in vitro

there is evidence for Ikaros binding sites clustered in the Il5

promoter and within Il4 regulatory regions, including conserved

noncoding sequence 1 (CNS-1), the IL-4 intron enhancer (I-E) and

the VA enhancer [20,62,63]. The binding of Ikaros to the Ifnc
CNS-22 element observed in Th2 cells may reflect its role in

silencing Ifnc. By contrast, in Th1 cells Ikaros binds predominantly

to CNS-1 and the Il4 promoter, and to a lesser extent to the Ifnc
promoter region [20]. Thus, Ikaros appears to exert distinct effects

on Il4 and Ifnc in the same cell type (Th1 and Th2 cells) [20].

Ikaros also binds to the Il10 promoter and intronic regulatory

regions [22]. A highly conserved Ikaros binding site in the

proximal Il10 promoter (2901 bp) is located within 40 bp of a

known GATA-3 binding site [22]. In line with this, Ikaros has

been found to interact with GATA-1 in erythroid cells [64]. In

addition, Ikaros interacts with GATA-1 and GATA-2 in mast cells

Figure 7. Helios is not induced during IL-4-directed in vitro
polarization of CD4 T cells. LN cell suspensions from OTII mice were
cultured in standard conditions for 6 days to induce IL-4-producing cells
in vitro. The cultures included OVA peptide+IL-4+neutralizing anti-IL-12
and anti-IFN-c. Flow cytometry dot plots show cells producing IL-4
versus IFN-c. The graphs show expression of IL-4, GATA-3, Helios, NF-
kB1 and c-Maf mRNA relative to b2-microglobulin mRNA by freshly-
isolated total LN cell suspensions (open circles), or by cells after Th2
differentiation (black circles). Data show duplicate culture results from 3
independent experiments.
doi:10.1371/journal.pone.0020731.g007
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but in this case negatively regulates IL-4 expression [62]. It is

plausible that Ikaros interacts with GATA-3 in a similar manner in

CD4 Th2 cells. As Helios dimerizes with Ikaros, it has been

proposed that it acts as a rate limiting factor for Ikaros functions,

thereby controlling its intracellular, cytoplasmic or nucleic,

localization [9,24,31]. Ikaros and Helios share the similar binding

DNA sequence (GGGAAT) [24]. Thus, it was tempting to

speculate that Helios, Ikaros and GATA-3 may be part of a

macromolecular complex that regulates accessibility at the Il4

locus in CD4 Th2 cells. Finally, to add to the complexity both

Ikaros and Helios have been shown to be able to potentiate as well

as to inhibit gene expression [9,21,24].

So why were Helios2/2 CD4 T cells not impaired in Th2

differentiation? Perhaps this is because its function is compensated

for by other members of the Ikaros family. Consistent with this, it

is striking that a more severe phenotype is manifested by the Ikaros

dominant negative homozygotes as compared with the Ikaros null

mice [65]. This suggests that Ikaros dominant negative dimerizes

and interferes with the activity of other Ikaros-like factors in the

hematopoietic system. In addition, even though Ikaros has been

shown to be required in vitro in IL-4-directed Th2 responses

[20,22] this does not necessarily imply that it is critical for the

induction of early Th2-features in CD4 T cells in Th2 responses in

vivo. We and others have shown that molecules important in vitro,

including IL-4, may not be required in vivo for induction of

primary Th2-features in CD4 T cells [57]. Thus, given the

diversity in homodimerization and heterodimerization of the

Ikaros family members, a full dissection of Helios activity during

differentiation of Th2 cells in vivo may be required to get a clear

understanding of the functional redundancies among Ikaros family

members. This may require the development of genetic models

where Helios can be studied in combination with Ikaros

deficiency.

Are alum-precipitated antigens appropriate to explore the role

of Helios? Undoubtedly Helios expression is associated with CD4

T cells responding to this form of antigen. Nevertheless, it is

plausible that other types of Th2 responses may be more suited to

assess the role of Helios in vivo. For instance, expression of the IL-4

receptor alpha, which is required for both IL-4 and IL-13

signalling is not required on smooth muscle cells for the

development of experimental allergic asthma [66]. On the other

hand, signalling through IL-4Ra contributes to initiation of Th2

immunity and pulmonary pathology during Nippostrongylus brasi-

liensis infections [67]. It also confers resistance during acute

Schistosomiasis [68]. Thus, studies of the response of Helios-deficient

mice to Th2-dependent parasites might reveal a role for this

transcription factor during infections.

Finally, it has been proposed that Helios is a specific marker that

distinguishes thymus-derived Foxp3 Tregs from those that are

peripherally induced [27]. Our results show that Helios is also

Figure 8. Helios is not required for Th2 or TFh cell induction in response to alumOVA in vivo. One day after receiving Helios+/+ or
Helios2/2CD45.2+OTII cells congenic CD45.1+ B6 mice were immunized with alumOVA in both footpads. A) Seven days later the draining LN were
taken for analysis by flow cytometry of CFSE content and the expression of Helios. B) The proportion of OTII cells in the CD4 T cells was assessed as
CD4+ CD45.2+ cells (left hand dot plots). The middle and right hand dot plots are gated on OTII cells and show the proportions of effector cells,
identified as CD4+CD45.2+CD44+CD62Llo and TFh cells, identified as CD4+CD45.2+CXCR5+PD-1+ cells. The graphs show the percentages (top) or total
numbers (bottom) of cells in LN. Left graphs compare all Helios+/+ OTII cells (black diamonds) with all Helios2/2 OTII cells (open diamonds). The
centre graphs compare those cells in these populations that are CD44+CD62Llo OTII effectors. The right graphs compare the CXCR5+PD-1+ TFh cells
(right). The data are derived from 2 independent experiments with 8–9 mice in total. Statistical differences between groups are indicated and
NS = not significant, ** = p,0.01.
doi:10.1371/journal.pone.0020731.g008
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induced in peripheral mature CD4 T cells that respond to Th2

antigens without upregulation of Foxp3. Even though Helios is

expressed at high levels in naturally occurring Tregs, two groups

failed to detect a role for this transcription factor in the

development and function of Tregs in their respective Helios

knock-out mice [27,55]. Thus, although Helios is a molecule

expressed in thymocytes, Tregs and Th2 cytokine-producing cells

its role in the biology of these cells remains obscure.

Figure 9. Helios2/2 OTII cells responding to alumOVA induce IgG class switched plasma cells at comparable levels to those of
Helios+/+ OTII cells. Chimeras were constructed by transfer of Helios+/+ or Helios2/2CD45.2+OTII cells into congenic CD45.1+ B6 mice. One day
later they were immunized with alumOVA in both footpads and the B cell response in the draining LN at 7 days was assessed. A) Representative flow
cytometry plots show gating of antibody-producing cells (B220intCD138+) and GC B cells (B220+Fas+GL7+). The graphs show the percentages (top) or
the numbers (bottom) of GC B cells (left) or antibody-producing cells (right) in the two groups of chimeras. The data are derived from 2 independent
experiments with 8–9 mice in each group. B) The graphs compare the levels of IL-4 mRNA and Cc1, Ce and Cc2a germline transcripts (GT) per LN
section in each of the 8 chimeras in both groups. C) Dot plots show the gating of IgG1 and IgG2a, B220+CD138+ antibody-producing cells. The
graphs show the % B220+CD138+ cells that were IgG1 expressing or IgG2a expressing in the draining LN of each of 5 chimeras in the two groups. D)
Photomicrographs of sections of a draining LN from a representative Helios+/+OTII cell chimera (left) and Helios2/2OTII cell chimera (right). IgG1+ cells
are blue, IgG2a+ are brown. Black arrow heads highlight rare IgG2a-producing cells. All results are from 2 independent experiments. The Mann-
Whitney 2 tailed statistical differences between groups shown are indicated and NS = not significant, * = p,0.05, ** = p,0.01.
doi:10.1371/journal.pone.0020731.g009
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Materials and Methods

Mice and Chimeras
Wild-type C57BL/6J mice were from HO Harlan OLAC Ltd.

(Bicester, UK). The Helios mice have been described elsewhere

[55]. This strain was maintained on a C57BL6 background by

crossing Helios+/2 mice. OTII mice that are transgenic for ab
TCR specific for 323–339 OVA-peptide in the context of H-2 I-

Ab (Charles River, Wilmington, MA) were crossed to CD45.1+

C57BL/6 congenic mice (The Jackson Laboratory, Bar Harbor,

Maine, USA), or NF-kB12/2 C57BL/6 mice [69], or Helios+/2

C57BL/6 mice. NF-kB12/2 mice were a kind gift from Dr. J.H.

Caamaño (University of Birmingham, UK). All animal procedures

were carried out in strict accordance with local ethical approval

from the University of Birmingham and the UK Home Office

license (Project license 40/2904) as covered by the Animals

(Scientific procedures) Act 1986.

Fetal liver progenitors were prepared from E14 or E15 mouse

embryos derived from pregnant females of the Helios+/2OTII+/2

mouse colony. These cells were frozen in a FCS 10% DMSO

solution while each embryo was genotyped by PCR for Helios

deficiency as previously described [55] and OTII transgene with

primers for mouse OTII TCR a-chain: forward: 59- AAAGGGA-

GAAAAAGCTCTCC-39, reverse: 59- CCAGCTGCGTCCCAT-

CAC-39. Chimeras were constructed by cell transfer of about

206106 freshly defrosted foetal liver progenitor cells, resuspended

in a 150 ml volume of PBS and injected into the tail vein of

lethally-irradiated (264.5G) C57BL/6 mice. In studies of the role

of Helios in OTII cells, C57BL/6 or CD45.1+ C57BL/6 congenic

mice for experiments performed at 3 days or 7 days, respectively,

received 106106 CFSE-labelled LN cells from Helios+/+OTII or

Helios2/2OTII chimeras.

T cell purification, adoptive transfer and immunization
CD4 T cells from lymph nodes (LN) of CD45.1+ OTII mice

were purified using anti-CD4 MACS microbeads (Miltenyi Biotec,

Bisley, UK), CFSE-labelled (Cambridge Bioscience, Cambridge,

UK) and 26106 cells were injected i.v. into CD45.2+ C57BL/6

congenic mice. Mice were immunized the following day in both

footpads with alum-precipitated ovalbumin as previously described

[5,44].

Flow cytometry, T cell analysis and FACS-cell sorting
Popliteal LN were prepared as previously described [5,46].

Antibodies against B220- PerCP-Cy5.5 (RA3-6B2), CD4-PerCP-

Cy5.5 (RM4-5), CD45.1-PE (A20), CD45.2-PE (104), CD45.2-PE-

Figure 10. Induction of Th2/TFh-cytokines and transcription factors in CD4 T cells by alumOVA does not require Helios. One day after
receiving Helios+/+ or Helios2/2 OTII cells recipient B6 mice were immunized with alumOVA in both footpads. A) Three days later the draining LN
were taken for analysis by flow cytometry of CFSE content and the expression of Helios. B) At this stage the Helios+/+ (black circles) or Helios2/2 (open
circles) OTII cells were FACS-sorted as CFSE+ CD4 T cells. Largely non-activated endogenous CFSE2 CD4 cells were used as controls (black diamonds).
The relative mRNA levels of Th2, TFh and Th1 cytokines (top row) or transcription factors (bottom row) were determined by real time RT-PCR relative
to the level of b2-microglobulin mRNA expression. Each symbol represents sorted cells pooled from the two popliteal LN of one mouse. The data are
derived from 2 independent experiments with 6 mice in total. Statistical differences between groups are indicated and NS = not significant,
** = p,0.01.
doi:10.1371/journal.pone.0020731.g010
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Cy5.5 (104), CD44-APC (IM7), CD62L-PE (MEL-14) CD69-

biotinylated (H1.2F3), CD138-PE (281-2), CXCR5-biotinylated

(2G8), Fas-biotinylated (Jo2), GL7-FITC (GL7), PD-1-PE (J43)

and streptavidin-APC were from PharMingen (BD Bioscience,

Oxford, UK) or eBioscience (Hatfield, UK).

Populations or OTII single cells were sorted by flow cytometry

(MoFlo, DakoCytomation, UK) and the purity was routinely

.90%. Final analysis and graphical output were performed using

FlowJo software (Treestar, Costa Mesa, CA).

Ex vivo restimulation and intracellular cytokine and
immunoglobulin staining

Various days after primary or secondary immunization popliteal

or brachial LN cells were incubated at 106106 cells/ml with

10 mM free 323–339 OVA-peptide for 5 h prior to cytokine

detection. Intracellular FACS staining was performed using

Cytofix/cytoperm kit (Becton Dickinson, Oxford, UK) according

to manufacturer’s instructions. Anti- IL-4-APC (11B11) is from

PharMingen.

Intracellular staining to detect antibody-producing plasma cells

was performed using BD cytofix/cytoperm kit. Goat anti-IgG1-

alexa633 and anti-IgG2a-FITC were from Molecular Probe

(Invitrogen, Paisley UK) and Southern Biotech (Cambridge

BioSscience, Cambridge, UK), respectively.

Foxp3, GATA-3 and Helios detection by intracellular flow
cytometry

Intracellular staining was performed with the Foxp3 staining

buffer kit, according to the manufacturer’s protocol (eBioscience,

Hatfield, UK). Anti-Foxp3-e-Fluor 450 (FJK-16s), anti-GATA-3-

e-Fluor 660 (TWAJ), anti-Helios-Pacific Blue (22F6) and anti-

Helios-PE (22F6) [27] were from BioLegend (Cambridge, UK) or

eBioscience (Hatfield, UK).

Immunohistochemical analysis
For in situ study of immune responses 5 mm cryostat sections

were taken from snap-frozen LN for immunohistology as

described in [60]. After cutting the first sections, which were

used for immunohistology, two 25 mm sections of LN were cut,

placed in a polypropylene microfuge tube, and stored at 270uC.

Sections were fixed in acetone at 4uC for 20 minutes and air

dried. The staining to reveal IgG1, IgG2a have been described in

[57,58,70].

Real-time RT-PCR
Real-time semi-quantitative RT-PCR on population, or LN

sections, was performed as previously described [5,71]. Briefly,

probes and primers were designed using Primer Express software

(Applied Biosystems) and sequences are detailed in Table S1.

When possible, duplex were performed with b2-microglobulin and

a target gene. Probes for cytokines and transcription factors were

detected via a 59 label with FAM, while probe for b2-

microglobulin was 59 labeled with NED.

Single cells were collected in 384 well plates containing 2 ml of

cell-to-signal lysis buffer (Ambion, UK). mRNA were specifically

reverse-transcribed and the PCR performed by adding 5 ml of a

mix containing the Multiplex enzyme RT-PCR master mix

(Qiagen Multiplex Probe RT-PCR kit), primers and probes.

Details of the strategy and efficiency of the duplex and triplex RT-

PCR on single cells are shown in the Figure S1. Standard reaction

conditions for the TaqMan RT-PCR or PCR were used on the

ABI 7900.

In vitro Th2 polarization
Total LN OTII cells were incubated at 56106 cells/ml in 6 well

plates with 1 mM free 323–339 OVA-peptide (Alta Bioscience,

University of Birmingham, UK) in complete medium, plus IL-4

(10 ng/ml) and neutralizing anti-IL-12 (C17.8) (5 mg/ml) plus

anti-IFN-c (X.MG1.2) (5 mg/ml) for 6 days. Restimulation was

performed with anti-CD3 (145-2C11) coated (5 mg/ml) plus

soluble anti-CD28 (37.51) (1 mg/ml) for 5 h at 37uC. Cytokines

were from PeproTech and antibodies from Insight Biotech.

Statistics
Statistical analysis was performed using a two-tailed non-

parametric Mann-Whitney test. Values of p,0.05 were consid-

ered significant and all the p-values are indicated on the figures.

Supporting Information

Figure S1 Technique and strategy for duplex and triplex
RT-PCR at the single cell level and its validation.
Consecutive two-fold dilutions of the mRNA template were

amplified individually for IL-4 and each transcription factor gene

product. The RT-PCR for GATA-3 or Helios were set up to work

in triplex with b2microglobulin and IL-4 primers and probes,

while Ikaros, c-Maf or NF-kB1 were set up to work with primers

and probes specific for b2microglobulin only. A) CT plotted versus

the 2 fold successive dilutions of mRNA, showing a linear

quantitative relationship between the amount of mRNA template

and the CT. This shows that RT-PCR run as simplex (open

diamonds) or triplex (close diamonds) give equivalent results.

Equations describing the trend lines are shown in each graph. We

paid particular attention on the slope for each trend line and only

accepted a difference of 0.1 between simplex and triplex RT-PCR.

The correlation coefficients are also shown and are all close to 1.

Pictures show the intensity of fluorescence as a function of the

numbers of PCR cycles using SDS software (AppliedBiosystems)

for varying numbers of FACS-sorted cells (32, 16, 8, 4, 2 see

brown or purple lines) and 5 different single cells (see blue or green

lines). Relative quantification for gene expression in single cells was

achieved by setting thresholds (horizontal red line) within the

logarithmic phase of the PCR and determining the cycle number

at which the fluorescence signal reached the threshold (Ct). This

shows that, as expected, the CT increases as the number of cells

decreases. There is one blue flat line on each picture that shows a

well without template that is with no FACS-sorted cell. B) Similar

as in (A) for primer/probes that were run in simplex (open

diamonds) or duplex (grey diamonds) RT-PCR.

(PPT)

Table S1 Sequences for the primers and probes used in
this study as indicated in the materials and methods in
the section real-time semi-quantitative RT-PCR. Se-

quences are written from the 59 to the 39 terminus. a Assay-on-

demand (Applied Biosystem). GT: Germline Transcripts.

(DOC)
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