30 research outputs found
Impact of tissue specific parameters on the prediction of the biological effectiveness for treatment planning in ion beam therapy
Treatment planning in ion beam therapy requires a reliable estimation of the relative biological effectiveness (RBE) of the irradiated tissue. For the pilot project at GSI Helmholtzzentrum fĂĽr Schwerionenforschung GmbH and at other European ion beam therapy centers RBE prediction is based on a biophysical model, the Local Effect Model (LEM).
The model version in use, LEM I, is optimized to give a reliable estimation of RBE in the target volume for carbon ion irradiation. However, systematic deviations are observed for the entrance channel of carbon ions and in general for lighter ions. Thus, the LEM has been continuously developed to improve accuracy. The recent version LEM IV has proven to better describe in-vitro cell experiments. Thus, for the clinical application of LEM IV it is of interest to analyze potential differences compared to LEM I under treatment-like conditions.
The systematic analysis presented in this work is aiming at the comparison of RBE-weighted doses resulting from different approaches and model versions for protons and carbon ions. This will facilitate the assessment of consequences for clinical application and the interpretation of clinical results from different institutions.
In the course of this thesis it has been shown that the RBE-weighted doses predicted on the basis of LEM IV for typical situations representing chordoma treatments differ on average by less than 10 % to those based on LEM I and thus also allow a consistent interpretation of the clinical results. At Japanese ion beam therapy centers the RBE is estimated using their clinical experience from neutron therapy in combination with in-vitro measurements for carbon ions (HIMAC approach). The methods presented in this work allow direct comparison of the HIMAC approach and the LEM and thus of the clinical results obtained at Japanese and European ion beam therapy centers. Furthermore, the sensitivity of the RBE on the model parameters was evaluated. Among all parameters the characterization of the photon dose-response curve has been found to be of particular importance for the determination of RBE. The application of the LEM IV for proton beams more correctly represents the experimentally observed increase of RBE towards the distal end of the irradiation field compared to the clinically considered constant value of 1.1. It further allowed a better systematic characterization of the increased effective range of proton beams that is a consequence of the RBE enhancement at the distal edge of the treatment field.
The results of this work underline the importance of detailed RBE modeling for a long-term improvement of treatment planning in particle therapy and the better exploitation of advantages inherent to this radiation modality
Late normal tissue response in the rat spinal cord after carbon ion irradiation
Background: The present work summarizes the research activities on radiation-induced late effects in the rat spinal cord carried out within the “clinical research group ion beam therapy” funded by the German Research Foundation (DFG, KFO 214).
Methods and materials: Dose–response curves for the endpoint radiation-induced myelopathy were determined at 6 different positions (LET 16–99 keV/μm) within a 6 cm spread-out Bragg peak using either 1, 2 or 6 fractions of carbon ions. Based on the tolerance dose TD50 of carbon ions and photons, the relative biological effectiveness (RBE) was determined and compared with predictions of the local effect model (LEM I and IV). Within a longitudinal magnetic resonance imaging (MRI)-based study the temporal development of radiation-induced changes in the spinal cord was characterized. To test the protective potential of the ACE (angiotensin converting enzyme)-inhibitor ramipril™, an additional dose–response experiment was performed.
Results: The RBE-values increased with LET and the increase was found to be larger for smaller fractional doses. Benchmarking the RBE-values as predicted by LEM I and LEM IV with the measured data revealed that LEM IV is more accurate in the high-LET, while LEM I is more accurate in the low-LET region. Characterization of the temporal development of radiation-induced changes with MRI demonstrated a shorter latency time for carbon ions, reflected on the histological level by an increased vessel perforation after carbon ion as compared to photon irradiations. For the ACE-inhibitor ramipril™, a mitigative rather than protective effect was found.
Conclusions: This comprehensive study established a large and consistent RBE data base for late effects in the rat spinal cord after carbon ion irradiation which will be further extended in ongoing studies. Using MRI, an extensive characterization of the temporal development of radiation-induced alterations was obtained. The reduced latency time for carbon ions is expected to originate from a dynamic interaction of various complex pathological processes. A dominant observation after carbon ion irradiation was an increase in vessel perforation preferentially in the white matter. To enable a targeted pharmacological intervention more details of the molecular pathways, responsible for the development of radiation-induced myelopathy are required
Revealing the pace of river landscape evolution during the Quaternary: recent developments in numerical dating methods
During the last twenty years, several technical developments have considerably intensified the use of numerical dating methods for the Quaternary. The study of fluvial archives has greatly benefited from these enhancements, opening new dating horizons for a range of archives at distinct time scales and thereby providing new insights into previously unanswered questions. In this contribution, we separately present the state of the art of five numerical dating methods that are frequently used in the fluvial context: radiocarbon, Luminescence, Electron Spin Resonance (ESR), 230Th/U and terrestrial cosmogenic nuclides (TCN) dating. We focus on the major recent developments for each technique that are most relevant for new dating applications in diverse fluvial environments and on explaining these for non-specialists. Therefore, essential information and precautions about sampling strategies in the field and/or laboratory procedures are provided. For each method, new and important implications for chronological reconstructions of Quaternary fluvial landscapes are discussed and, where necessary, exemplified by key case studies. A clear statement of the current technical limitations of these methods is included and forthcoming developments, which might possibly open new horizons for dating fluvial archives in the near future, are summarised
A single-cell survey of the small intestinal epithelium
Intestinal epithelial cells (IECs) absorb nutrients, respond to microbes, provide barrier function and help coordinate immune responses. We profiled 53,193 individual epithelial cells from mouse small intestine and organoids, and characterized novel subtypes and their gene signatures. We showed unexpected diversity of hormone-secreting enteroendocrine cells and constructed their novel taxonomy. We distinguished between two tuft cell subtypes, one of which expresses the epithelial cytokine TSLP and CD45 (Ptprc), the pan-immune marker not previously associated with non-hematopoietic cells. We also characterized how cell-intrinsic states and cell proportions respond to bacterial and helminth infections. Salmonella infection caused an increase in Paneth cells and enterocytes abundance, and broad activation of an antimicrobial program. In contrast, Heligmosomoides polygyrus caused an expansion of goblet and tuft cell populations. Our survey highlights new markers and programs, associates sensory molecules to cell types, and uncovers principles of gut homeostasis and response to pathogens
Modelling human choices: MADeM and decision‑making
Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)
Impact of tissue specific parameters on the prediction of the biological effectiveness for treatment planning in ion beam therapy
Treatment planning in ion beam therapy requires a reliable estimation of the relative biological effectiveness (RBE) of the irradiated tissue. For the pilot project at GSI Helmholtzzentrum fĂĽr Schwerionenforschung GmbH and at other European ion beam therapy centers RBE prediction is based on a biophysical model, the Local Effect Model (LEM).
The model version in use, LEM I, is optimized to give a reliable estimation of RBE in the target volume for carbon ion irradiation. However, systematic deviations are observed for the entrance channel of carbon ions and in general for lighter ions. Thus, the LEM has been continuously developed to improve accuracy. The recent version LEM IV has proven to better describe in-vitro cell experiments. Thus, for the clinical application of LEM IV it is of interest to analyze potential differences compared to LEM I under treatment-like conditions.
The systematic analysis presented in this work is aiming at the comparison of RBE-weighted doses resulting from different approaches and model versions for protons and carbon ions. This will facilitate the assessment of consequences for clinical application and the interpretation of clinical results from different institutions.
In the course of this thesis it has been shown that the RBE-weighted doses predicted on the basis of LEM IV for typical situations representing chordoma treatments differ on average by less than 10 % to those based on LEM I and thus also allow a consistent interpretation of the clinical results. At Japanese ion beam therapy centers the RBE is estimated using their clinical experience from neutron therapy in combination with in-vitro measurements for carbon ions (HIMAC approach). The methods presented in this work allow direct comparison of the HIMAC approach and the LEM and thus of the clinical results obtained at Japanese and European ion beam therapy centers. Furthermore, the sensitivity of the RBE on the model parameters was evaluated. Among all parameters the characterization of the photon dose-response curve has been found to be of particular importance for the determination of RBE. The application of the LEM IV for proton beams more correctly represents the experimentally observed increase of RBE towards the distal end of the irradiation field compared to the clinically considered constant value of 1.1. It further allowed a better systematic characterization of the increased effective range of proton beams that is a consequence of the RBE enhancement at the distal edge of the treatment field.
The results of this work underline the importance of detailed RBE modeling for a long-term improvement of treatment planning in particle therapy and the better exploitation of advantages inherent to this radiation modality