124 research outputs found
Beyond the Frenkel-Kac-Segal construction of affine Lie algebras
This contribution reviews recent progress in constructing affine Lie algebras
at arbitrary level in terms of vertex operators. The string model describes a
completely compactified subcritical chiral bosonic string whose momentum
lattice is taken to be the (Lorentzian) affine weight lattice. The main feature
of the new realization is the replacement of the ordinary string oscillators by
physical DDF operators, whereas the unphysical position operators are
substituted by certain linear combinations of the Lorentz generators. As a side
result we obtain simple expressions for the affine Weyl translations as Lorentz
boosts. Various applications of the construction are discussed.Comment: 6 pages, LaTeX209 with twoside, fleqn, amsmath, amsfonts, amssymb,
amsthm style files; contribution to Proceedings of the 30th Int. Symposium
Ahrenshoop on the Theory of Elementary Particles, Buckow, Germany, August
27-31, 199
Closed Strings with Low Harmonics and Kinks
Low-harmonic formulas for closed relativistic strings are given. General
parametrizations are presented for the addition of second- and third-harmonic
waves to the fundamental wave. The method of determination of the
parametrizations is based upon a product representation found for the finite
Fourier series of string motion in which the constraints are automatically
satisfied. The construction of strings with kinks is discussed, including
examples. A procedure is laid out for the representation of kinks that arise
from self-intersection, and subsequent intercommutation, for harmonically
parametrized cosmic strings.Comment: 39, CWRUTH-93-
Sugawara-type constraints in hyperbolic coset models
In the conjectured correspondence between supergravity and geodesic models on
infinite-dimensional hyperbolic coset spaces, and E10/K(E10) in particular, the
constraints play a central role. We present a Sugawara-type construction in
terms of the E10 Noether charges that extends these constraints infinitely into
the hyperbolic algebra, in contrast to the truncated expressions obtained in
arXiv:0709.2691 that involved only finitely many generators. Our extended
constraints are associated to an infinite set of roots which are all imaginary,
and in fact fill the closed past light-cone of the Lorentzian root lattice. The
construction makes crucial use of the E10 Weyl group and of the fact that the
E10 model contains both D=11 supergravity and D=10 IIB supergravity. Our
extended constraints appear to unite in a remarkable manner the different
canonical constraints of these two theories. This construction may also shed
new light on the issue of `open constraint algebras' in traditional canonical
approaches to gravity.Comment: 49 page
The VLBA Imaging and Polarimetry Survey at 5 GHz
We present the first results of the VLBA Imaging and Polarimetry Survey
(VIPS), a 5 GHz VLBI survey of 1,127 sources with flat radio spectra. Through
automated data reduction and imaging routines, we have produced publicly
available I, Q, and U images and have detected polarized flux density from 37%
of the sources. We have also developed an algorithm to use each source's I
image to automatically classify it as a point-like source, a core-jet, a
compact symmetric object (CSO) candidate, or a complex source. The mean ratio
of the polarized to total 5 GHz flux density for VIPS sources with detected
polarized flux density ranges from 1% to 20% with a median value of about 5%.
We have also found significant evidence that the directions of the jets in
core-jet systems tend to be perpendicular to the electric vector position
angles (EVPAs). The data is consistent with a scenario in which ~24% of the
polarized core-jets have EVPAs that are anti-aligned with the directions of
their jet components and which have a substantial amount of Faraday rotation.
In addition to these initial results, plans for future follow-up observations
are discussed.Comment: 36 pages, 3 tables, 13 figures; accepted for publication in Ap
Kac-Moody algebras in perturbative string theory
The conjecture that M-theory has the rank eleven Kac-Moody symmetry e11
implies that Type IIA and Type IIB string theories in ten dimensions possess
certain infinite dimensional perturbative symmetry algebras that we determine.
This prediction is compared with the symmetry algebras that can be constructed
in perturbative string theory, using the closed string analogues of the DDF
operators. Within the limitations of this construction close agreement is
found. We also perform the analogous analysis for the case of the closed
bosonic string.Comment: 31 pages, harvmac (b), 4 eps-figure
Lectures on conformal field theory and Kac-Moody algebras
This is an introduction to the basic ideas and to a few further selected
topics in conformal quantum field theory and in the theory of Kac-Moody
algebras.Comment: 59 pages, LaTeX2e, extended version of lectures given at the Graduate
Course on Conformal Field Theory and Integrable Models (Budapest, August
1996), to appear in Springer Lecture Notes in Physic
Confining QCD Strings, Casimir Scaling, and a Euclidean Approach to High-Energy Scattering
We compute the chromo-field distributions of static color-dipoles in the
fundamental and adjoint representation of SU(Nc) in the loop-loop correlation
model and find Casimir scaling in agreement with recent lattice results. Our
model combines perturbative gluon exchange with the non-perturbative stochastic
vacuum model which leads to confinement of the color-charges in the dipole via
a string of color-fields. We compute the energy stored in the confining string
and use low-energy theorems to show consistency with the static quark-antiquark
potential. We generalize Meggiolaro's analytic continuation from parton-parton
to gauge-invariant dipole-dipole scattering and obtain a Euclidean approach to
high-energy scattering that allows us in principle to calculate S-matrix
elements directly in lattice simulations of QCD. We apply this approach and
compute the S-matrix element for high-energy dipole-dipole scattering with the
presented Euclidean loop-loop correlation model. The result confirms the
analytic continuation of the gluon field strength correlator used in all
earlier applications of the stochastic vacuum model to high-energy scattering.Comment: 65 pages, 13 figures, extended and revised version to be published in
Phys. Rev. D (results unchanged, 2 new figures, 1 new table, additional
discussions in Sec.2.3 and Sec.5, new appendix on the non-Abelian Stokes
theorem, old Appendix A -> Sec.3, several references added
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in âs = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fbâ1 of protonâproton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
Renormalization group flows and continual Lie algebras
We study the renormalization group flows of two-dimensional metrics in sigma
models and demonstrate that they provide a continual analogue of the Toda field
equations based on the infinite dimensional algebra G(d/dt;1). The resulting
Toda field equation is a non-linear generalization of the heat equation, which
is integrable in target space and shares the same dissipative properties in
time. We provide the general solution of the renormalization group flows in
terms of free fields, via Backlund transformations, and present some simple
examples that illustrate the validity of their formal power series expansion in
terms of algebraic data. We study in detail the sausage model that arises as
geometric deformation of the O(3) sigma model, and give a new interpretation to
its ultra-violet limit by gluing together two copies of Witten's
two-dimensional black hole in the asymptotic region. We also provide some new
solutions that describe the renormalization group flow of negatively curved
spaces in different patches, which look like a cane in the infra-red region.
Finally, we revisit the transition of a flat cone C/Z_n to the plane, as
another special solution, and note that tachyon condensation in closed string
theory exhibits a hidden relation to the infinite dimensional algebra G(d/dt;1)
in the regime of gravity. Its exponential growth holds the key for the
construction of conserved currents and their systematic interpretation in
string theory, but they still remain unknown.Comment: latex, 73pp including 14 eps fig
- âŠ