10 research outputs found

    Consumption of endophyte-infected fescue seed during the dry period does not decrease milk production in the following lactation.

    Get PDF
    Ergot alkaloids in endophyte-infected grasses inhibit prolactin (PRL) secretion and may reduce milk production of cows consuming these grasses. We investigated the effects of consuming endophyte-infected fescue seed during late lactation and the dry period on mammary growth, differentiation, and milk production. Twenty-four multiparous Holstein cows were randomly assigned to 3 treatment groups. Starting at 90±4 d prepartum, cows were fed endophyte-free fescue seed (control; CON), endophyte-free fescue seed plus 3×/wk subcutaneous injections of bromocriptine (0.1mg/kg of body weight, positive control; BROMO), or endophyte-infected fescue seed (INF) as 10% of the diet on an as fed basis. Although milk yield of groups did not differ before treatment, at dry off (-60 d prepartum) INF and BROMO cows produced less milk than CON. Throughout the treatment period, basal concentrations of PRL and the prepartum increase in plasma PRL were reduced in INF and BROMO cows compared with CON cows. Three weeks after the end of treatment, circulating concentrations of PRL were equivalent across groups. In the subsequent lactation milk yield was not decreased; in fact, BROMO cows exhibited a 9% increase in milk yield relative to CON. Evaluation of mammary tissue during the dry period and the subsequent lactation, by quantitative histology and immunohistochemical analysis of proliferation markers and putative mammary stem or progenitor cell markers, indicated that feeding endophyte-infected fescue seed did not significantly affect mammary growth and development. Feeding endophyte-infected grasses during the dry period may permit effective utilization of feed resources without compromising milk production in the next lactation

    Consumption of endophyte-infected fescue seed during the dry period does not decrease milk production in the following lactation

    No full text
    Ergot alkaloids in endophyte-infected grasses inhibit prolactin (PRL) secretion and may reduce milk production of cows consuming these grasses. We investigated the effects of consuming endophyte-infected fescue seed during late lactation and the dry period on mammary growth, differentiation, and milk production. Twenty-four multiparous Holstein cows were randomly assigned to 3 treatment groups. Starting at 90\ub14 d prepartum, cows were fed endophyte-free fescue seed (control; CON), endophyte-free fescue seed plus 3 7/wk subcutaneous injections of bromocriptine (0.1mg/kg of body weight, positive control; BROMO), or endophyte-infected fescue seed (INF) as 10% of the diet on an as fed basis. Although milk yield of groups did not differ before treatment, at dry off (-60 d prepartum) INF and BROMO cows produced less milk than CON. Throughout the treatment period, basal concentrations of PRL and the prepartum increase in plasma PRL were reduced in INF and BROMO cows compared with CON cows. Three weeks after the end of treatment, circulating concentrations of PRL were equivalent across groups. In the subsequent lactation milk yield was not decreased; in fact, BROMO cows exhibited a 9% increase in milk yield relative to CON. Evaluation of mammary tissue during the dry period and the subsequent lactation, by quantitative histology and immunohistochemical analysis of proliferation markers and putative mammary stem or progenitor cell markers, indicated that feeding endophyte-infected fescue seed did not significantly affect mammary growth and development. Feeding endophyte-infected grasses during the dry period may permit effective utilization of feed resources without compromising milk production in the next lactation

    Paleomagnetic data from the New England Orogen (eastern Australia) and implications for oroclinal bending

    Get PDF
    © 2015 Elsevier B.V..Orogenic curvatures (oroclines) are common in modern and ancient orogens, but the geodynamic driving forces of many oroclines remain controversial. Here we focus on the New England oroclines of eastern Australia, the formation of which had been previously broadly constrained to the Early-Middle Permian. This time interval encompasses periods of both back-arc extension (at ~ 300-280 Ma) and subsequent contractional deformation (Hunter-Bowen Orogeny) that commenced at ~ 270 Ma along the paleo-Pacific and Gondwanan subduction plate boundary. We present new paleomagnetic data from volcanic rocks that were extruded during the transition from extension to contraction (at ~ 272 Ma), and we show that the oroclinal structure must have formed prior to the emplacement of the volcanic rocks. Our results thus indicate that oroclinal bending in the southernmost New England Orogen has been completed prior to the onset of Middle Permian contractional deformation. It is therefore concluded that the oroclines have likely formed during back-arc extension, and that a major contribution to the orogenic curvature was driven by trench retreat

    The study of Earth's magnetism (1269–1950): A foundation by Peregrinus and subsequent development of geomagnetism and paleomagnetism

    No full text
    International audienceThis paper summarizes the histories of geomagnetism and paleomagnetism (1269–1950). The role of Peregrinus is emphasized. In the sixteenth century a debate on local versus global departures of the field from that of an axial dipole pitted Gilbert against Le Nautonier. Regular measurements were undertaken in the seventeenth century. At the turn of the nineteenth century, de Lamanon, de Rossel, and von Humboldt discovered the decrease of intensity as one approaches the equator. Around 1850, three figures of rock magnetism were Fournet (remanent and induced magnetizations), Delesse (remagnetization in a direction opposite to the original), and Melloni (direction of lava magnetization acquired at time of cooling). Around 1900, Brunhes discovered magnetic reversals. In the 1920s, Chevallier produced the first magnetostratigraphy and hypothesized that poles had undergone enormous displacements. Matuyama showed that the Earth's field had reversed before the Pleistocene. Our review ends in the 1940s, when exponential development of geomagnetism and paleomagnetism starts
    corecore