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ABSTRACT 

Orogenic curvatures (oroclines) are common in modern and ancient orogens, but the 

geodynamic driving forces of many oroclines remain controversial. Here we focus on 

the New England oroclines of eastern Australia, the formation of which had been 

previously broadly constrained to the Early-Middle Permian. This time interval 

encompasses periods of both back-arc extension (at ~300-280 Ma) and subsequent 

contractional deformation (Hunter-Bowen Orogeny) that commenced at ~270 Ma 

along the paleo-Pacific and Gondwanan subduction plate boundary. We present new 

paleomagnetic data from volcanic rocks that were extruded during the transition from 

extension to contraction (at ~272 Ma), and we show that the oroclinal structure must 

have formed prior to the emplacement of the volcanic rocks. Our results thus indicate 

that oroclinal bending in the southernmost New England Orogen has been completed 

prior to the onset of Middle Permian contractional deformation. It is therefore 

concluded that the oroclines have likely formed during back-arc extension, and that a 

major contribution to the orogenic curvature was driven by trench retreat. 

 

Keywords: Oroclinal bending, Subduction rollback, Back-arc extension, New England 

Orogen, Paleomagnetism. 
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1. INTRODUCTION 

Two competing hypotheses are commonly invoked to explain the origin of oroclines. 

Some researchers link the formation of thick-skinned oroclines to orogen-parallel 

compression (Fig. 1a) and buckling of the whole lithosphere (e.g., Gutiérrez-Alonso et 

al., 2004; Johnston et al., 2013; Weil et al., 2013). Other models assume that oroclinal 

bending is primarily controlled by orogen-perpendicular forces (Fig. 1b) imposed by 

processes such as indentation and subduction rollback (e.g., Moresi et al., 2014; 

Rosenbaum, 2014). In many of the latter models, orocline formation has occurred 

contemporaneously with back-arc extension in response to trench retreat (e.g., 

Royden, 1993; Lonergan and White, 1997; Maffione et al., 2013). In these types of 

oroclines, which are common, for example, in the Mediterranean region (Rosenbaum, 

2014), oroclinal bending does not seem to be associated with orogen-parallel buckling. 

However, in many other orogenic systems, temporal relationships between 

intermitted periods of extension, contraction, block translation, and oroclinal bending 

are not well constrained. In this paper, we establish these relationships for a set of late 

Paleozoic oroclines in the southern New England Orogen, eastern Australia (Fig. 2), and 

use our findings to demonstrate intimate links between oroclinal bending and back-arc 

extension. 

Constraints on the timing of oroclinal bending in the New England Orogen indicate that 

the oroclines formed during the Early to Middle Permian (~300-260 Ma, e.g., 

Rosenbaum et al., 2012). This time interval overlaps with both a major phase of 

extensional tectonism that occurred in eastern Australia at ~300-280 Ma (Fig. 3; Korsch 

et al., 2009a), as well as with the initiation of subsequent contractional deformation 
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that affected the region between ~270 to 230 Ma (Hunter-Bowen Orogeny, Fig. 3; 

Collins, 1991; Holcombe et al., 1997). Previous constraints on the timing of oroclinal 

bending were therefore insufficient for determining whether the New England 

oroclines formed during the early phase of extension or in the course of the 

subsequent phase of contraction, thus impeding our ability to understand the 

dynamics of oroclinal bending. To resolve this problem, we conducted a paleomagnetic 

study on volcanic rocks (Alum Mountain Volcanics, Fig. 4) that were emplaced at ~272 

Ma (Roberts et al., 1996; Li et al., 2014), i.e., at the transitional period between 

extension to contraction. A comparison of our results with contemporary 

paleomagnetic data from Gondwana provides a robust constraint on the timing of 

oroclinal bending and an insight into the geodynamics of orocline formation in eastern 

Australia. 

 

2. GEOLOGICAL SETTING 

The New England Orogen is the youngest and easternmost orogen in Australia (Fig. 2a, 

Glen, 2005). It is mainly composed of Devonian-Carboniferous supra-subduction rocks 

associated with a west-dipping (present day orientation) subduction zone (Leitch, 

1974), which were intruded by Permian-Triassic magmatic rocks (Shaw and Flood, 

1981). In the southern New England Orogen, the Devonian-Carboniferous rocks are 

predominantly associated with a fore-arc region, and include fore-arc basin strata 

(Tamworth Belt and correlative blocks) and accretionary complex units (Fig. 2b, Leitch, 

1974). The Early Permian rocks in the southern New England Orogen are dominated by 
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S-type granitoids and clastic sedimentary successions, which were likely deposited in a 

back-arc extensional setting (Holcombe et al., 1997; Korsch et al., 2009a; Shaanan et 

al., 2015). Collectively, a number of geological observations suggest that from ~300 Ma 

to ~280 Ma, the New England Orogen was positioned in an extensional back-arc 

setting (Fig. 3a, c, and corresponding references). Firstly, during this period widespread 

sedimentary basins were developed, most notably in the Sydney, Gunnedah and 

Bowen basins (Fig. 2), with evidence that basin formation was accompanied by 

extensional faulting (Korsch et al., 2009a). Basin formation involved bimodal 

volcanism, including the possible emplacement of a 4.5–9 km succession of mafic rift-

related volcanic rocks (Meandarra Gravity Ridge, Fig. 3a) beneath the Permian strata 

(Krassay et al., 2009). Secondly, evidence for crustal melting and the emplacement of 

298-288 Ma S-type granitoids (Jeon et al., 2012; Rosenbaum et al., 2012), as well as 

coeval local high-temperature metamorphism (Craven et al., 2012), indicates that the 

heat flow during this period was relatively high. This is a characteristic feature of back-

arc regions (Currie and Hyndman, 2006). The transition from a fore-arc region during 

the Carboniferous to a back-arc environment in the Early Permian was attributed to 

the onset of eastward trench retreat (Jenkins et al., 2002; Shaanan et al., 2015).  

The initiation of the Hunter-Bowen Orogeny, at ~270 or ~265 Ma (Fig. 3; Collins, 1991; 

Holcombe et al., 1997) marked an abrupt change in the style of tectonism throughout 

the New England Orogen. Contractional deformation produced folds and thrusts (Fig. 

3b, c, and corresponding references), and affected Lower Permian rocks of the Sydney, 

Gunnedah and Bowen basins, which evolved into a foreland system (Fergusson, 1991; 

Fielding et al., 1997; Korsch and Totterdell, 2009; Korsch et al., 2009a; Korsch et al., 
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2009b). The shift from regional extension and high heat flow to a contractional fold-

and-thrust belt coincides with a general quiescence in the regional magmatism, from 

~280 to ~260 Ma, with the exception of ~271-266 Ma volcanism in the southernmost 

New England Orogen, which includes the Alum Mountain Volcanics. The REE pattern of 

the Alum Mountain Volcanics suggests that it was derived primarily from a depleted 

upper asthenosphere, and accordingly, the origin of these volcanic rocks has been 

hypothesized to indicate an episode of slab break-off (Caprarelli and Leitch, 2001; Li et 

al., 2014). 

Widespread magmatism throughout the southern New England Orogen recommenced 

at ~260 Ma and continued until ~220 Ma (Fig. 3c). Unlike the earlier phase of mostly S-

type granitoids, the Late Permian to Triassic phase of magmatic activity predominantly 

involved the emplacement of I-type granitoids and calc-alkaline volcanism (Fig. 3c; 

Shaw and Flood, 1981; Bryant et al., 1997). 

The most prominent deformational feature within the southern New England Orogen 

is a set of tight oroclines that include the Z-shaped Texas and Coffs-Harbour oroclines 

in the north and the S-shaped Manning and Nambucca oroclines in the south (Fig. 2b). 

Evidence for the existence of these oroclines includes (1) a curved belt of early 

Paleozoic serpentinites (Korsch and Harrington, 1987), (2) curved structural and 

magnetic fabrics within the Devonian-Carboniferous subduction complex (Korsch and 

Harrington, 1987; Aubourg et al., 2004; Li et al., 2012; Li and Rosenbaum, 2014; 

Mochales et al., 2014), (3) the spatial distribution of the segmented Devonian-

Carboniferous fore-arc basin blocks (Korsch and Harrington, 1987; Glen and Roberts, 

2012; Rosenbaum, 2012; Hoy et al., 2014) and (4) a curved belt of deformed S-type 
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Early Permian granitoids (Fig. 2b; Rosenbaum et al., 2012). The age of the Early 

Permian granitoids (298-288 Ma) provides a maximum constraint for the timing of 

oroclinal bending, whereas a minimum age constraint is provided by the occurrence of 

the Late Permian to Triassic (260-220 Ma) I-type magmatic rocks that crosscut the 

oroclinal structure (Cawood et al., 2011b; Rosenbaum et al., 2012). 

Paleomagnetic data from Lower Carboniferous fore-arc basin strata (Rouchel, Gresford 

and Myall blocks; Fig. 2b) were interpreted as an indication for counterclockwise 

rotations of 80° for the Rouchel and Gresford blocks and 120° for the Myall Block, 

around vertical axes located within these blocks (Geeve et al., 2002), or for more 

modest rotations around distal vertical axes (Cawood et al., 2011b). Within the Myall 

Block, Permian strata are exposed in the cores of two north-south trending, doubly-

plunging synclines (Gloucester and Myall; Figs. 2b, 4). These folds are thought to have 

formed in response to ~E-W Hunter-Bowen contractional deformation, and a 

subsequent phase of contraction that produced a Type-1 fold interference pattern 

(Korsch and Harrington, 1981; Collins, 1991). The folded succession includes Permian 

clastic sedimentary rocks underlain by a volcanic horizon (the Alum Mountain 

Volcanics), which unconformably overlies the Carboniferous fore-arc basin rocks (Fig. 

4c, d). 

Exposures of the Alum Mountain Volcanics form an oval ridge that highlights the 

structure of the Gloucester syncline (Fig. 4). Both the thickness and composition of the 

Alum Mountain Volcanics are variable. The maximum thickness is 1800 meters and the 

lithology includes basalt, andesite, dacite, rhyolite flows, breccias, welded-ash flows 

and ash-fall tuffs (Carey and Browne, 1938; Roberts et al., 1991; Caprarelli and Leitch, 
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2001). The age of the Alum Mountain Volcanics has been dated at 271.8 ± 1.8 Ma 

using 
40

Ar/
39

Ar geochronology (Li et al., 2014), and 274.1 ± 3.4 Ma using U–Pb SHRIMP 

zircon geochronology (Roberts et al., 1996). 

 

3. METHODS 

We conducted petrographic, structural, and paleomagnetic investigation of the Alum 

Mountain Volcanics. Oriented samples from 25 localities in the Myall Block (Fig. 4a) 

were drilled using a hand held Pomeroy EZ Core Drill model D261-C. Cores were 

oriented, using Pomeroy orienting fixture, with a magnetic compass, and when 

possible a sun compass. The top and bottoms of the sampled cores were trimmed in 

the laboratory, and 22 mm long cylindrical specimens were separated for 

measurements. Tilt correction for paleomagnetic sampling sites were based on 

structural constraints from proximal overlying sedimentary strata (Fig. 4a). Magnetic 

measurements were carried out in a magnetically shielded room with a DC-SQUID 

cryogenic magnetometer at the Istituto Nazionale di Geofisica e Vulcanologia (INGV, 

Rome, Italy). Samples were stepwise demagnetized using thermal up to 680°C and 

alternating field (AF) up to 130 mT techniques. Data analyses were conducted using 

Remasoft 3.0 (Chadima and Hrouda, 2006) and IAPD (Torsvik, 1986) software. 
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4. RESULTS 

4.1.  Petrography and structural data 

The composition and degrees of alteration of the Alum Mountain Volcanics were 

found to be extremely variable even within outcrops. Samples consisted of basalt, 

trachyte, quartz rhyolite and ignimbrite (Fig. 5). The more mafic lithologies include 

amygdaloids and fractures filled by pumpellyite (Fig 5a), indicating a low prehnite-

pumpellyite metamorphic facies (temperatures of ~100-300°C). The absence of 

actinolite and epidote and the presence of chlorite, quartz and calcite, are consistent 

with the suggestion that metamorphic conditions were lower than greenschist facies. 

Analyses of structural data were restricted to strata from above the Permo-

Carboniferous unconformity. Projection of 165 poles to bedding from across the 

Gloucester syncline shows a scatter attributed to non-cylindrical folding (Fig. 4b). 

These data can be subdivided into northern, central and southern domains. The 

structure of the northern domain is characterized by an upright rounded fold with a 

shallow south plunging hinge (βn = 04/190; Fig. 4b, d), whereas the fold in the 

southern domain is angular and plunges moderately to the north (βs = 18/359; Fig. 4b, 

c). This double-plunging fold geometry was used for calculating the paleomagnetic tilt-

correction. 

4.2. Paleomagnetism 

The Natural Remanent Magnetization (NRM) of the Alum Mountain Volcanics varies 

strongly from 0.9 mA/m to 2.5 A/m. Both AF and thermal stepwise 

demagnetizations have been applied (Fig. 6a, b). In some cases, where full 
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demagnetization was not achieved by 100-130 mT alternating field, samples were 

thermally demagnetized at 400-680°C (e.g., Fig. 6c). Samples from eight sites either do 

not carry a stable remanence magnetization, or have highly scattered (α95 > 16°) 

and/or inconsistent (within site) characteristic remanence directions (Fig. 4a).  These 

sites include the most altered lithologies mentioned above and were excluded from 

further analysis.  

Most other samples carry a stable steep downward (after tilt correction) unipolar 

characteristic remanent magnetization, which is likely carried by magnetite and/or 

hematite (Figs. 6 and 7b; Table 1). Few samples have an additional low-stability, 

randomly-oriented remanence component, which was removed after the first few 

steps of demagnetization. The characteristic remanence directions from the 18 

prospective sites are scattered in geographic coordinates, but the scatter decreases 

significantly when a tilt correction is applied (Fig. 7a, b). The fold test of McFadden 

(1990) is positive at the 99% confidence level; fold test SCOS values are 9.447 in situ 

and 1.517 after tilt correction with critical value of 6.919. The in situ Fisher’s precision 

parameter is 1.5 and after tilt correction is 10.7 (Fig. 7).  We therefore conclude that 

the measured remanent magnetization is pre-folding. The overall tilt-corrected 

remanence direction is D=27.5°, I=88.2° (N=18, k=10.7, α95=11.1°) and the 

corresponding paleomagnetic pole is at 30.0°S, 153.2°E (A95 = 19.5°).  
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5. DISCUSSION 

5.1. Data interpretation 

The positive paleomagnetic fold test (Fig. 7) indicates that the analyzed characteristic 

magnetization component of the Alum Mountain Volcanics predates folding in the 

Gloucester and Myall synclines. The low temperatures of the sub-greenschist 

metamorphic conditions (<300°C) makes the possibility of re-magnetization less likely, 

and in conjunction with the positive fold test, suggests that the measured 

characteristic magnetization is primary. 

Previously published paleomagnetic data from the New England Orogen were 

compiled by Cawood et al. (2011b), who proposed a model that involved buckling and 

significant northward translations, possibly assisted by sinistral strike-slip faulting. 

However, the timing and mechanism of oroclinal bending have remained poorly 

constrained, particularly because paleomagnetic data from the southern New England 

Orogen were limited to older rocks (Devonian and Carboniferous) in comparison to the 

Permian rocks sampled by us. Therefore, the timing of the final stage of oroclinal 

bending has remained unconstrained. A comparison of our calculated ~272 Ma 

paleopole of the Myall Block (30.0°S, 153.2°E, α95=19.5°) with the mean 275-270 Ma 

Gondwanan pole (recalculated from McElhinny et al., 2003 and Cawood et al., 2011b) 

and with the mean pole for the northern Tamworth Belt (Schmidt, 1988; Lackie and 

Schmidt, 1993; Opdyke et al., 2000; Klootwijk, 2002, 2003; summarized by Cawood et 

al., 2011b) shows overlapping confidence circles. This indicates that at ~272 Ma the 

Myall Block was located close to its present position with respect to cratonic Australia  

(Fig. 8a). 
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The proximity and overlap in confidence circles of the paleopoles suggests that by 

~272 Ma, the blocks of the New England Orogen were close to their present-day 

position with respect to cratonic Australia (Gondwana), hence that the oroclinal 

structure was predominantly complete. When plotting the blocks in their exact current 

arrangement with respect to Australia, the confidence circles of the Gondwanan and 

Tamworth Belt poles are close but do not overlap (Fig. 8b), indicating that a minor 

component of relative translation postdated the Early Permian. As indicated by our 

positive fold test, the formation of Gloucester and Myall synclines is an example for 

deformation that occurred after ~272 Ma. These folds and inferred translations are 

likely related to contractional deformation during the Hunter-Bowen Orogeny (Fig. 3) 

and though it may have affected the overall oroclinal structure, our data indicate that 

oroclinal bending in the southernmost New England Orogen (Manning Orocline) was 

essentially completed prior to the initiation of the Hunter-Bowen Orogeny. 

5.2. Timing and tectonic setting of oroclinal bending in the New England Orogen 

Previous suggestions for the timing of oroclinal bending, based on hitherto available 

constraints, broadly ranged from (a) Middle to Late Carboniferous (Murray et al., 1987; 

Geeve et al., 2002), and (b) latest Carboniferous (or earliest Permian) to Middle 

Permian (~305-260 Ma; Cawood et al., 2011b; Glen and Roberts, 2012; Rosenbaum et 

al., 2012), and (c) Late Permian (Collins et al., 1993). Whether the northern oroclines 

(Texas and Coffs Harbour oroclines) developed simultaneously with the southern 

oroclines (Manning and Nambucca oroclines) is unknown. However, both sets of 

structures show evidence for a curved belt of Early Permian granitoids (298-288 Ma), 

which mimics the geometry of the oroclines, thus indicating that both the northern 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 13

and southern oroclines formed during or after the emplacement of these granitoids 

(Rosenbaum et al., 2012). Our new paleomagnetic results further constrain the timing 

of oroclinal bending, indicating that the southern part of the New England oroclines 

(i.e., Manning Orocline) must have developed prior to the emplacement of the Alum 

Mountain Volcanics at ~272 Ma. Therefore, the Manning Orocline must have formed in 

the Early Permian after ~298 Ma and before ~272 Ma. Importantly, this time span 

predated the initiation of contractional deformation associated with the Hunter-

Bowen Orogeny (Fig. 3). 

The collective geological evidence for Early Permian contemporaneous emplacement 

of S-type granitoids, high-temperature metamorphism, and extensional faulting (Fig. 3, 

and corresponding references), indicate that during this period, the New England 

Orogen was positioned in a hot back-arc extensional setting (Jenkins et al., 2002; 

Korsch et al., 2009a; Shaanan et al., 2015). Furthermore, age spectra of detrital zircons 

from the Early Permian Nambucca Block (Fig. 2b), include a major component of pre-

Devonian ages, implying that detritus was derived from cratonic Australia (Gondwana), 

as expected for a sedimentary basin that was positioned in a back-arc setting (Shaanan 

et al., 2015). The new time constraint for the formation of the Manning Orocline, 

therefore, indicates that oroclinal bending took place when the whole area was 

situated in an extensional back-arc setting. 

5.3. Implications for the geodynamics of oroclinal bending 

The constraints on the timing of oroclinal bending in the southernmost New England 

Orogen, in conjunction with evidence for contemporaneous back-arc extension, raise 
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the possibility that trench retreat played an important role in the formation of the 

New England oroclines. Trench retreat is controlled by the negative buoyancy of 

subducting slabs relative to surrounding asthenosphere, and by the flux of mantle 

return flow that volumetrically compensates the retrograde slab motion (Elsasser, 

1971; Garfunkel et al., 1986). Lateral variations in the rate of trench retreat are 

common (Jarrard, 1986; Schellart et al., 2007), and are responsible for the formation of 

arcuate segments and cusps in the geometry of plate boundaries (Schellart and Lister, 

2004; Morra et al., 2006; Schellart et al., 2007). In particular, higher retreat rates and 

tighter curvatures have been shown to occur in the proximity of the slab edges and in 

response to subduction of narrow slab segments (Stegman et al., 2006; Schellart et al., 

2007). As demonstrated in numerous examples in modern tectonics, such a 

progressive formation of plate boundary curvatures is intimately linked to the 

development of back-arc extensional basins and block rotations in the overriding plate 

(Lonergan and White, 1997; Rosenbaum and Lister, 2004; Faccenna et al., 2014; 

Rosenbaum, 2014). Accordingly, rotation and translation of blocks and tectonic nappes 

in the overriding plate, in response to the development of plate boundary curvatures, 

can result in the formation of oroclines. 

The suggestion that oroclines form in response to plate boundary migration (e.g., 

trench retreat or indentation) is fundamentally different from the type of processes 

proposed, for example, for the origin of the (Paleozoic) Cantabrian Orocline (Weil et 

al., 2013) or Kazakhstan Orocline (Xiao et al., 2010). Most models for the formation of 

these oroclines assume that bending occurred through buckling of the whole 

lithosphere in response to orogen-parallel contraction (Fig. 1a), but whether this 
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process is geodynamically plausible is yet to be demonstrated. Moreover, modern 

oroclines, for example, in the Mediterranean region (Rosenbaum, 2014), eastern 

Indonesia (Hall, 2012) and southwest Pacific (Schellart et al., 2006), do not show 

evidence for lithospheric buckling, and appear to be primarily controlled by a 

combination of continental indentation and trench retreat (Fig. 1b). It is therefore 

possible that the role of buckling has been overestimated in reconstructions of ancient 

oroclines. 

Results of this study suggest that similarly to some modern examples, oroclinal 

bending in the southernmost New England Orogen was driven by trench retreat. The 

evidence for extensional tectonism during the Early Permian, together with the 

indication that oroclinal bending was mostly concluded prior to the commencement of 

the Hunter-Bowen Orogeny, are consistent with the suggestion that trench retreat 

accompanied by back-arc extension, rather than orogen-parallel contraction, was the 

primary mechanism that controlled oroclinal bending in the New England Orogen. 

6. CONCLUSIONS 

New paleomagnetic data indicate that the southern part of the New England oroclines 

predominantly formed in the Early Permian, before ~272 Ma. During this period, the 

former (Devonian-Carboniferous) fore-arc units of the New England Orogen were 

positioned in an extensional back-arc setting, indicating that a substantial migration of 

the subduction boundary must have occurred. The established spatial and temporal 

link between the formation of the Manning Orocline with back-arc extension and the 

migration of the subduction boundary, suggest that similarly to modern examples such 
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as the Mediterranean region, the formation of the New England oroclines was 

primarily controlled by trench retreat. 
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FIGURE CAPTIONS 

Figure 1. Simplified 3D illustration of two alternative hypotheses for oroclinal bending 

(not to scale). (a) Oroclinal bending that is controlled by lithospheric buckling 

associated with orogen-parallel contraction (after Gutiérrez-Alonso et al., 2004). (b) 

Oroclinal bending that is controlled by a retreating subduction zone. 

Figure 2. Simplified maps of the study area. (a) Major tectonic components of eastern 

Australia. (b) Geological map of the southern New England Orogen. 

Figure 3. Maps and Time-Space diagram highlighting late Paleozoic to early Mesozoic 

extensional and contractional deformational events in eastern Australia. (a) Geological 

features associated with pre ~272 Ma regional extension, (b) subsequent Hunter 

Bowen contractional deformation, and (c) Time-Space diagram. Abbreviations: Gl—

Gloucester syncline, Dy—Dyamberin Block, Na—Nambucca Block, Ma—Manning 

Basin, D’A—D’Aguilar metamorphic complex, Wo—Wongwibinda metamorphic 

complex, Ti—Tia metamorphic complex. Data sources: (1) Carboniferous subduction 

complex in the New England (Leitch, 1974; Murray et al., 1987; Glen, 2005). (2) 

Deposition and distribution of the Sydney, Gunnedah and Bowen basins (Powell et al., 

1990; Veevers et al., 1994; Korsch et al., 2009a). (3) Exhumation and cooling of 

metamorphic complexes in the northern New England Orogen (Little et al., 1992; 

Holcombe and Little, 1994; Little et al., 1995). (4) S-type plutons in North D’Aguilar 

Block (310-306 Ma; Little et al., 1995). (5) Meandarra gravity ridge (Korsch et al., 

2009a; Krassay et al., 2009). (6) Peak metamorphism in the southern New England 

Orogen (~296 Ma, amphibolite-facies; Craven et al., 2012). (7) Emplacement of 
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Urannah Suite batholith (Connors Arch) and associated late stage dykes (308-284 Ma; 

Allen et al., 1998). (8) Early Permian extensional faults and associated inferred 

extension directions in and along the Sydney, Gunnedah and Bowen basins 

(Hammond, 1987; Korsch et al., 2009a; Brooke-Barnett and Rosenbaum, 2015). (9) 

Early Permian basins in the New England Orogen (Li et al., 2015; Shaanan et al., 2015). 

(10) Felsic dykes in the Urannah Suite (285 Ma; Allen, 2000). (11) Early Permian 

emplacement of S-type granitoids (Bundarra and Hillgrove Plutonic Suites) in the 

southern New England Orogen (Flood and Shaw, 1977; Cawood et al., 2011a; Jeon et 

al., 2012; Rosenbaum et al., 2012). (12) SHRIMP zircon ages from the Cranky Corner 

Basin (287 to 284 Ma; Korsch et al., 2009a). (13) Initiation of thermal relaxation 

subsidence in the Sydney, Gunnedah and Bowen basins (Korsch et al., 2009a). (14) 

Emplacement of the Alum Mountain Volcanics and Werrie Basalt (271.8 ± 1.8 and 

266.4 ± 3.0 Ma respectively; Li et al., 2014). (15) Folded Early Permian strata in the 

southern New England Orogen (Collins, 1991) and D2 folds and corresponding 

penetrative fabric in Nambucca Block (275-265 Ma; Shaanan et al., 2014). (16) Middle 

Permian to 220-230 Ma folds in the in the northern New England Orogen (Fergusson et 

al., 1990, 1993; Holcombe et al., 1997). (17) Middle Permian to Triassic cleavage in the 

northern New England Orogen (Fergusson et al., 1990, 1993; Li et al., 2015). (18) 263—

261 Ma folds in the Gunnedah Basin (Veevers et al., 1994). (19) Uplift by faulting of 

metamorphic complexes in the southern New England Orogen (266-258 Ma; 

Landenberger et al., 1995). (20) Commencement of thrusting in the Fitzroy region (265 

Ma; Holcombe et al., 1997). (21) Post 265 Ma (D3 and D4) folds in Nambucca Block 

(Offler and Foster, 2008; Shaanan et al., 2014). (22) Late Permian to Late Triassic thrust 

sheet in the Bowen Basin and the Gogango Overfolded Zone (Fergusson, 1991; Fielding 
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et al., 1997; Holcombe et al., 1997). (23) Late Permian to Late Triassic folds in the 

Bowen Basin (Fergusson, 1991; Holcombe et al., 1997). (24) Mafic dykes in the 

Urannah Suite, northernmost New England Orogen (273–229 Ma; Allen, 2000). (25) 

Thrust-fold of North Pine Fault (Mt Mee) at ~260 Ma and Late-Permian to Triassic 

thrusts in Marlborough-Fitzroy area, northern New England Orogen (Holcombe et al., 

1997). (26) Major final movement on the Peel Fault (latest Permian and before 250 

Ma) (Woodward, 1995; Cawood, 2005). (27) I-type plutonism in the southern New 

England Orogen (255-240 Ma; Shaw and Flood, 1981; Bryant et al., 1997; Cawood et 

al., 2011b). (28) Minimum constraints of 260 Ma and 241 Ma for activity of thrusts in 

the western margin of the North D'Aguilar Block (Holcombe et al., 1997). (29) A gap in 

magmatic activity (Caprarelli and Leitch, 1998; Cawood et al., 2011b). 

Figure 4. Geological map and cross sections of the study area (Gloucester and Myall 

synclines). Sampling sites that were paleomagnetically unstable or inconsistent are in 

grey. The stereographic projection (equal area lower hemisphere) shows poles to 

bedding from the Permian succession of the Gloucester syncline. Poles are divided into 

northern (black and βn, n=83), Central (grey and βc, n=28) and southern (brown and 

βs, n=54) domains. Dashed line is best-fit girdle for the axial plane of the syncline. 

Locations of cross sections are shown in section a. 

Figure 5. Photomicrographs of representative lithologies of the Alum Mountain 

Volcanics. Left sections are taken under cross-polarised light and right sections are 

under plane-polarised light. For locations see Figure 4. (a) Pumpellyite amygdule in fine 

mafic groundmass (site G3). (b) Trachyte with sanidine feldspar crystals showing 

carlsbad twinning and trachytic flow texture (site G21). (c) Rhyolitic ignimbrite with 
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glassy groundmass and abundant lithic fragments (site G6). (d) Volcanic glass with 

perlitic texture from the base of the volcanic succession (Site VG in Fig. 4d and 

corresponding location in 4a). 

Figure 6. Alternating field (a), thermal (b), and (c) combined alternating field and 

thermal demagnetizations. In orthogonal plots, open (closed) symbols show 

magnetisation vector endpoints in the vertical (horizontal) plane. Stereoplots (Lambert 

projection) show tilt corrected pointing palaeomagnetic directions (all downwards). 

Curves show intensities during stepwise demagnetization. 

Figure 7. Fold test for paleomagnetic data from the Gloucester and Myall synclines. (a) 

Steroplot of in situ mean directions of sampling sites (see also Table 1). (b) Steroplot of 

mean directions of sampling sites after tilt correction. (c) Ficher’s precision parameter 

during unfolding. 

Figure 8. Paleogeographic reconstructions of the blocks of the southern New England 

Orogen (T – Texas, NT – North Tamworth, R – Rouchel, G – Gresford, M – Myall, H – 

Hastings). Paleopoles are shown with circles of confidence: square – mean Gondwanan 

pole (recalculated from McElhinny et al., 2003 and Cawood et al., 2011b), triangle – 

mean North Tamworth pole (calculated by Cawood et al., 2011b), circle – Myall pole 

(this study). (a) After Cawood et al. (2011b). (b) with all block at their present positions 

with respect to Australia. 

Table 1. Alum Mountain Volcanics, paleomagnetic data. 

Footnote: 
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 N/n=number of demagnetized/used specimens for calculation samples (sites); Dg, 

Ig=remanence declination, inclination in situ; Ds, Is=remanence declination, inclination 

after tilt correction; k=Fisher’s precision parameter; α95= the semi-angle of the 95% 

cone of confidence; VGP = virtual geomagnetic pole (only for the tilt corrected data); 

dp, dm =the semi-axes of the cone of confidence about the pole at the 95% probability 

level; A95 = the semi-angle of the 95% cone of confidence for the VPGs’ distribution. 
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 Figure 1 . Simplified 3D illustration of two alternative hypotheses for oroclinal 
bending (not to scale). (a) Oroclinal bending that is controlled by lithospheric 
buckling associated with orogen-parallel contraction (after Gutiérrez-Alonso et al., 
2004). (b) Oroclinal bending that is controlled by a retreating subduction zone. 
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 Figure 2. Simplified maps of the study area. (a) Major tectonic components of 
eastern Australia. (b) Geological map of the southern New England Orogen. 
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 Figure 3. Maps and Time-Space diagram highlighting late Paleozoic to early 
Mesozoic extensional and contractional deformational events in eastern Australia. 
(a) Geological features associated with pre ~272 Ma regional extension, (b) 
subsequent Hunter Bowen contractional deformation, and (c) Time-Space diagram. 
Abbreviations: Gl—Gloucester syncline, Dy— Dyamberin Block, Na—Nambucca 
Block, Ma— Manning Basin, D’A—D’Aguilar metamorphic complex, Wo—
Wongwibinda metamorphic complex, Ti—Tia metamorphic complex. Data sources: 
(1) Carboniferous subduction complex in the New England (Leitch, 1974; Murray et 
al., 1987; Glen, 2005). (2) Deposition and distribution of the Sydney, Gunnedah 
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and Bowen basins (Powell et al., 1990; Veevers et al., 1994; Korsch et al., 2009a). 
(3) Exhumation and cooling of metamorphic complexes in the northern New 
England Orogen (Little et al., 1992; Holcombe and Little, 1994; Little et al., 1995). 
(4) S-type plutons in North D’Aguilar Block (310-306 Ma; Little et al., 1995). (5) 
Meandarra gravity ridge (Korsch et al., 2009a; Krassay et al., 2009). (6) Peak 
metamorphism in the southern New England Orogen (~296 Ma, amphibolite-facies; 
Craven et al., 2012). (7) Emplacement of Urannah Suite batholith (Connors Arch) 
and associated late stage dykes (308-284 Ma; Allen et al., 1998). (8) Early Permian 
extensional faults and associated inferred extension directions in and along the 
Sydney, Gunnedah and Bowen basins (Hammond, 1987; Korsch et al., 2009a; 
Brooke-Barnett and Rosenbaum, 2015). (9) Early Permian basins in the New 
England Orogen (Li et al., 2015; Shaanan et al., 2015). (10) Felsic dykes in the 
Urannah Suite (285 Ma; Allen, 2000). (11) Early Permian emplacement of S-type 
granitoids (Bundarra and Hillgrove Plutonic Suites) in the southern New England 
Orogen (Flood and Shaw, 1977; Cawood et al., 2011a; Jeon et al., 2012; 
Rosenbaum et al., 2012). (12) SHRIMP zircon ages from the Cranky Corner Basin 
(287 to 284 Ma; Korsch et al., 2009a). (13) Initiation of thermal relaxation 
subsidence in the Sydney, Gunnedah and Bowen basins (Korsch et al., 2009a). 
(14) Emplacement of the Alum Mountain Volcanics and Werrie Basalt (271.8 ± 1.8 
and 266.4 ± 3.0 Ma respectively; Li et al., 2014). (15) Folded Early Permian strata in 

the southern New England Orogen (Collins, 1991) and D2 folds and corresponding 

penetrative fabric in Nambucca Block (275-265 Ma; Shaanan et al., 2014). (16) Middle 

Permian to 220-230 Ma folds in the in the northern New England Orogen (Fergusson 

et al., 1990, 1993; Holcombe et al., 1997). (17) Middle Permian to Triassic cleavage in 

the northern New England Orogen (Fergusson et al., 1990, 1993; Li et al., 2015). (18) 

263—261 Ma folds in the Gunnedah Basin (Veevers et al., 1994). (19) Uplift by faulting 

of metamorphic complexes in the southern New England Orogen (266-258 Ma; 

Landenberger et al., 1995). (20) Commencement of thrusting in the Fitzroy region 

(265 Ma; Holcombe et al., 1997). (21) Post 265 Ma (D3 and D4) folds in Nambucca 

Block (Offler and Foster, 2008; Shaanan et al., 2014). (22) Late Permian to Late 

Triassic thrust sheet in the Bowen Basin and the Gogango Overfolded Zone 

(Fergusson, 1991; Fielding et al., 1997; Holcombe et al., 1997). (23) Late Permian to 

Late Triassic folds in the Bowen Basin (Fergusson, 1991; Holcombe et al., 1997). (24) 

Mafic dykes in the Urannah Suite, northernmost New England Orogen (273–229 Ma; 

Allen, 2000). (25) Thrust-fold of North Pine Fault (Mt Mee) at ~260 Ma and Late-

Permian to Triassic thrusts in Marlborough-Fitzroy area, northern New England 

Orogen (Holcombe et al., 1997). (26) Major final movement on the Peel Fault (latest 

Permian and before 250 Ma) (Woodward, 1995; Cawood, 2005). (27) I-type plutonism 

in the southern New England Orogen (255-240 Ma; Shaw and Flood, 1981; Bryant et 

al., 1997; Cawood et al., 2011b). (28) Minimum constraints of 260 Ma and 241 Ma for 

activity of thrusts in the western margin of the North D’Aguilar Block (Holcombe et al., 

1997). (29) A gap in magmatic activity (Caprarelli and Leitch, 1998; Cawood et al., 

2011b). 
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 Figure 4. Geological map and cross sections of the study area (Gloucester and 
Myall synclines). Sampling sites that were paleomagnetically unstable or 
inconsistent are in grey. The stereographic projection (equal area lower 
hemisphere) shows poles to bedding from the Permian succession of the 
Gloucester syncline. Poles are divided into northern (black and βn, n=83), Central 
(grey and βc, n=28) and southern (brown and βs, n=54) domains. Dashed line is 
best-fit girdle for the axial plane of the syncline. Locations of cross sections are 
shown in section a. 
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 Figure 5. Photomicrographs of representative lithologies of the Alum Mountain 
Volcanics. Left sections are taken under cross-polarised light and right sections are 
under plane-polarised light. For locations see Figure 4. (a) Pumpellyite amygdule in 
fine mafic groundmass (site G3). (b) Trachyte with sanidine feldspar crystals 
showing carlsbad twinning and trachytic flow texture (site G21). (c) Rhyolitic 
ignimbrite with glassy groundmass and abundant lithic fragments (site G6). (d) 
Volcanic glass with perlitic texture from the base of the volcanic succession (Site 
VG in Fig. 4d and corresponding location in 4a). 
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 Figure 6. Alternating field (a), thermal (b), and (c) combined alternating field and 
thermal demagnetizations. In orthogonal plots, open (closed) symbols show 
magnetisation vector endpoints in the vertical (horizontal) plane. Stereoplots 
(Lambert projection) show tilt corrected pointing palaeomagnetic directions (all 
downwards). Curves show intensities during stepwise demagnetization. 
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 Figure 7. Fold test for paleomagnetic data from the Gloucester and Myall 
synclines. (a) Steroplot of in situ mean directions of sampling sites (see also Table 
1). (b) Steroplot of mean directions of sampling sites after tilt correction. (c) Ficher’s 
precision parameter during unfolding. 
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 Figure 8. Paleogeographic reconstructions of the blocks of the southern New 
England Orogen (T – Texas, NT – North Tamworth, R – Rouchel, G – Gresford, M 
– Myall, H – Hastings). Paleopoles are shown with circles of confidence: square – 
mean Gondwanan pole (recalculated from McElhinny et al., 2003 and Cawood et 
al., 2011b), triangle – mean North Tamworth pole (calculated by Cawood et al., 
2011b), circle – Myall pole (this study). (a) After Cawood et al. (2011b). (b) with all 
block at their present positions with respect to Australia. 
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TABLE 1 
 
Site             Location   N/n Dg Ig k α95 Ds Is k α95       VGP dp dm  
  Lat (°S ) Long (°E)   (°) (°)  (°) (°) (°)  (°) ( °N) (°E) (°) (°)  
G1  32° 0'13.85" 151°58'54.16" 7/7 63.6 -11.9 20.4 13.7 70.5 57.0  20.4 13.7 -5.7 200.6 14.5 19.9 
G2  32° 4'42.56" 151°59'47.34" 7/7 99.1 11.4 59.1 7 .8 143.4 84.6 59.1 7.8 -40.4 160.4 15.4 15.6 
G3  32° 2'59.62" 151°59'49.64" 9/8 61.0 -14.7 32.5 9.9 44.7 48.7 32.5 9.9 15.1 191.3 8.6 13.0 
G4  32° 5'9.81" 152° 0'36.10" 7/7 112.1 8.5 373.6 3 .1 183.5 82.8 373.6 3.1 -46.2 150.8 5.9 6.1 
G5  32°10'2.74" 151°58'3.37" 7/3 105.9 17.7 1492.0 3.2 168.6 84.0 1492.0 3.2 -43.8 155.2 6.2 6.3 
G6  32° 7'10.61" 151°59'30.79" 9/9 101.3 -2.0 124.2  4.6 102.9 63.0 124.2 4.6 -30.5 205.8 5.7 7.2 
G10  32° 2'23.02" 151°55'32.90" 8/7 272.5 8.9 60.5 7.8 241.0 66.8 60.5 7.8 -42.1 101.8 10.6 12.9 
G11  32° 3'35.62" 151°54'43.94" 9/8 315.0 -4.2 347. 4 3.0 0.2 63.4 347.4 3.0 13.0 152.1 3.7 4.7 
G15  32°14'5.55" 151°58'26.36" 10/6 91.9 4.7 90.4 7 .1 83.4 74.4 90.4 7.1 -24.7 182.4 11.7 12.9 
G16  32°16'0.39" 151°58'35.12" 6/6 77.2 9.2 20.6 15 .1 33.6 68.0 20.6 15.1 1.5 172.3 21.3 25.3 
G17  32°17'7.78" 151°58'37.28" 11/11 89.0 23.0 108. 9 4.4 323.4 78.3 108.9 4.4 -13.5 138.4 7.8 8.3 
G18  32°20'1.29" 151°58'47.77" 9/8 110.7 41.4 321.2  3.1 262.7 62.0 321.2 3.1 -26.4 98.2 3.7 4.8 
G19  32°21'42.24" 151°57'57.44" 7/6 87.2 45.9 75.6 7.8 307.2 55.7 75.6 7.8 5.5 111.8 8.0 11.2 
G20  32°15'46.98" 151°54'30.27" 10/8 245.1 -17.5 41 .2 8.7 231.7 58.8 41.2 8.7 -48.1 87.0 9.6 13.0 
G21  32°17'52.47" 151°54'54.19" 11/11 251.6 -8.0 24 .5 9.4 234.8 70.2 24.5 9.4 -45.9 108.6 14.0 16.2 
G25  32°20'40.13" 151°56'55.24" 7/6 107.6 -1.4 18.6  16.0 101.0 57.8 18.6 16.0 -27.3 211.9 17.3 23.5 
G26  32°13'57.50" 151°54'50.76" 10/4 259.2 30.9 966 .1 3.0 43.8 83.0 966.1 3.0 -21.9 162.2 5.7 5.9 
M1  32°28'40.74" 152°11'39.22" 6/6 226.6 26.8 246.1  4.3 222.3 66.7 246.1 4.3 -54.5 103.1 5.9 7.1 
 
All sites  32.2°  152.0°  26/18 101.3 25.1 1.5 49.0  27.5 88.2 10.7 11.1 -30.0 153.2 A95 = 19.5°  
 
N/n=number of demagnetized/used specimens for calculation samples (sites); Dg, Ig=remanence declination, inclination in situ; Ds, Is=remanence 

declination, inclination after tilt correction; k=Fisher’s precision parameter; α95= the semi-angle of the 95% cone of confidence; VGP = virtual geomagnetic 

pole (only for the tilt corrected data); dp, dm =the semi-axes of the cone of confidence about the pole at the 95% probability level; A95 = the semi-angle of 

the 95% cone of confidence for the VPGs’ distribution.
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Graphical abstract 
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Highlights 

- A Permian paleopole from the southernmost New England oroclines was obtained. 

- Data show no rotations relative to cratonic Australia/Gondwana after ~272 Ma. 

- Oroclinal bending occurred before 272 Ma and prior to the Hunter-Bowen Orogeny. 

- The New England oroclines formed in extensional setting likely by trench retreat. 

 


