25 research outputs found

    Helianthemum sicanorum (Cistaceae), una nueva especie de Sicilia

    Get PDF
    Helianthemum sicanorum, an endemic species occurring on calcareous marls near Gela (S Sicily), is described and illustrated. Due to its habit and flower morphology, H. sicanorum shows close relationships with H. kahiricum Del., circumscribed to the semi-arid habitats of northern Africa and the Middle East. H. sicanorum is quite rare and localized on steep slopes facing the sea, where it is a member of thermophilous garigues of the Cisto-Micromerietea class.Se describe e ilustra la nueva especie Helianthemum sicanorum,que crece sobre margas calizas cerca de Gela, en el sur de Sicilia.Por su hábito y morfología floral, H. sicanorum está relacionadocon H. kahiricum Del., especie propia de ambientes subdesérticosdel norte de África y Asia Menor. H. sicanorum es muy raro,y está limitado a laderas abruptas que miran al mar, donde creceen garrigas termófilas de la clase Cisto-Micromerietea

    Notas sobre la taxonomía de la población en Sicilia de Asperula gussonei (Rubiaceae): A. peloritana sp. nov.

    Get PDF
    Taxonomical investigation on Asperula gussonei, a rare Sicilian endemism, allowed us to verify that the Madonie population is well differentiated from the Mt. Scuderi one. These two populations are here treated as distinct species: A. gussonei Boiss. from Madonie and A. peloritana sp. nov. from Mt. Scuderi. The main morphological and ecological differences between the two species are pointed out. Their iconographies and relationships with the allied species are given too.Una investigación taxonómica sobre Asperula gussonei, especie rara endémica de Sicilia, nos permitió comprobar que la población de las Madonias se diferencia bien de la de Mt. Scuderi. Estas dos poblaciones son consideradas aquí como especies diferentes: A. gussonei Boiss. de las Madonias y A. peloritana sp. nov. del Mt. Scuderi. Se indican las principales diferencias morfológicas y ecológicas entre las dos especies. Se muestran también sus iconografías y relaciones con las especies afines

    Environmental drivers and spatial scaling of species abundance distributions in Palaearctic grassland vegetation

    Get PDF
    [EN] Species abundance distributions (SADs) link species richness with species abundances and are an important tool in the quantitative analysis of ecological communities. Niche-based and sample-based SAD models predict different spatial scaling properties of SAD parameters. However, empirical research on SAD scaling properties is largely missing. Here we extracted percentage cover values of all occurring vascular plants as proxies of their abundance in 1725 10-m(2) plots from the GrassPlot database, covering 47 regional data sets of 19 different grasslands and other open vegetation types of the Palaearctic biogeographic realm. For each plot, we fitted the Weibull distribution, a model that is able to effectively mimic other distributions like the log-series and lognormal, to the species-log abundance rank order distribution. We calculated the skewness and kurtosis of the empirical distributions and linked these moments, along with the shape and scale parameters of the Weibull distribution, to plot climatic and soil characteristics. The Weibull distribution provided excellent fits to grassland plant communities and identified four basic types of communities characterized by different degrees of dominance. Shape and scale parameter values of local communities on poorer soils were largely in accordance with log-series distributions. Proportions of subdominant species tended to be lower than predicted by the standard lognormal SAD. Successive accumulation of plots of the same vegetation type yielded nonlinear spatial scaling of SAD moments and Weibull parameters. This scaling was largely independent of environmental correlates and geographic plot position. Our findings caution against simple generalizations about the mechanisms that generate SADs. We argue that in grasslands, lognormal-type SADs tend to prevail within a wider range of environmental conditions, including more extreme habitats such as arid environments. In contrast, log-series distributions are mainly restricted to comparatively species-rich communities on humid and fertile soils.We thank all vegetation scientists who carefully collected the plant diversity data and contributed them to GrassPlot. The Eurasian Dry Grassland Group (EDGG) and the International Association for Vegetation Science (IAVS) supported the EDGG field workshops, which generated a core part of the GrassPlot data. The Bavarian Research Alliance (via the BayIntAn scheme) and the Bayreuth Center of Ecology and Environmental Research (BayCEER) funded the initial GrassPlot workshop during which the database was established (grants to Jurgen Dengler). Werner Ulrich acknowledges support from the Polish National Science Centre (Grant 2017/27/B/NZ8/00316). Idoia Biurrun and Juan Antonio Campos were partly supported by the Basque Government (IT936-16). Goffredo Filibeck was partly supported by the MIUR initiative "Department of Excellence" (Law 232/2016) granted to DAFNE. Peter Torok was supported by the NKFIH K 119225 and K 137573 projects and the HAS Momentum Program during the manuscript preparation. Franz Essl appreciates funding by the Austrian Science Foundation FWF (Grant I 3757-B29)

    Post-glacial determinants of regional species pools in alpine grasslands

    Get PDF
    [Aim] Alpine habitats support unique biodiversity confined to high-elevation areas in the current interglacial. Plant diversity in these habitats may respond to area, environment, connectivity and isolation, yet these factors have been rarely evaluated in concert. Here we investigate major determinants of regional species pools in alpine grasslands, and the responses of their constituent species groups.[Location] European mountains below 50° N.[Time period] Between 1928 and 2019.[Major taxa studied] Vascular plants.[Methods] We compiled species pools from alpine grasslands in 23 regions, including 794 alpine species and 2,094 non-alpines. We used species–area relationships to test the influence of the extent of alpine areas on regional richness, and mixed-effects models to compare the effects of 12 spatial and environmental predictors. Variation in species composition was addressed by generalized dissimilarity models and by a coefficient of dispersal direction to assess historical links among regions.[Results] Pool sizes were partially explained by current alpine areas, but the other predictors largely contributed to regional differences. The number of alpine species was influenced by area, calcareous bedrock, topographic heterogeneity and regional isolation, while non-alpines responded better to connectivity and climate. Regional dissimilarity of alpine species was explained by isolation and precipitation, but non-alpines only responded to isolation. Past dispersal routes were correlated with latitude, with alpine species showing stronger connections among regions.[Main conclusions] Besides area effects, edaphic, topographic and spatio-temporal determinants are important to understand the organization of regional species pools in alpine habitats. The number of alpine species is especially linked to refugia and isolation, but their composition is explained by past dispersal and post-glacial environmental filtering, while non-alpines are generally influenced by regional floras. New research on the dynamics of alpine biodiversity should contextualize the determinants of regional species pools and the responses of species with different ecological profiles.The authors thank Daniela Gaspar for support in GIS analyses. B.J.-A. thanks the Marie Curie Clarín-COFUND program of the Principality of Asturias-EU (ACB17-26), the regional grant IDI/2018/000151, and the Spanish Research Agency grant AEI/ 10.13039/501100011033. J.V.R.-D. was supported by the ACA17-02FP7 Marie Curie COFUND-Clarín grant. G.P.M. was funded by US National Science Foundation award 1853665. C.M. was funded by grant no. 19-28491 of the Czech Science Foundation.Peer reviewe

    EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats

    Get PDF
    Aim: The EUNIS Habitat Classification is a widely used reference framework for European habitat types (habitats), but it lacks formal definitions of individual habitats that would enable their unequivocal identification. Our goal was to develop a tool for assigning vegetation‐plot records to the habitats of the EUNIS system, use it to classify a European vegetation‐plot database, and compile statistically‐derived characteristic species combinations and distribution maps for these habitats. Location: Europe. Methods: We developed the classification expert system EUNIS‐ESy, which contains definitions of individual EUNIS habitats based on their species composition and geographic location. Each habitat was formally defined as a formula in a computer language combining algebraic and set‐theoretic concepts with formal logical operators. We applied this expert system to classify 1,261,373 vegetation plots from the European Vegetation Archive (EVA) and other databases. Then we determined diagnostic, constant and dominant species for each habitat by calculating species‐to‐habitat fidelity and constancy (occurrence frequency) in the classified data set. Finally, we mapped the plot locations for each habitat. Results: Formal definitions were developed for 199 habitats at Level 3 of the EUNIS hierarchy, including 25 coastal, 18 wetland, 55 grassland, 43 shrubland, 46 forest and 12 man‐made habitats. The expert system classified 1,125,121 vegetation plots to these habitat groups and 73,188 to other habitats, while 63,064 plots remained unclassified or were classified to more than one habitat. Data on each habitat were summarized in factsheets containing habitat description, distribution map, corresponding syntaxa and characteristic species combination. Conclusions: EUNIS habitats were characterized for the first time in terms of their species composition and distribution, based on a classification of a European database of vegetation plots using the newly developed electronic expert system EUNIS‐ESy. The data provided and the expert system have considerable potential for future use in European nature conservation planning, monitoring and assessment

    GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands

    Get PDF
    GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board
    corecore