318 research outputs found

    Strategic planning optimisation of "Napoli Est" water distribution system

    Get PDF
    The District Meter Areas (DMA) design is an innovative methodology of water networks management, based on the pressure patterns control and on the water flows monitoring, in order to reduce water losses and to optimize the water systems management. A District Meter Area is an area supplied from few water inputs, into which discharges can be easily measured to determine leaks. So, the DMA design represents an alternative to the traditional approach based on heavy looped distribution network. In the present paper the DMA design of the “Napoli Est” water distribution system (approximately 65.000Ă·70.000 customers), performed with the support of the Water Agency ARIN S.p.A., is discussed. After analysis of authorized consumption, by means of a monitoring campaign of water flows over the area, the system water balance was performed, showing significant water losses, as a consequence of high pressure patterns. This situation was confirmed by the high number of maintenance operations performed in the area during the year 2005. In order to characterize the piezometric heads on the network, ARIN S.p.A. supplied to the installation of six pressure transducers in the most vulnerable areas. The water level in the supply reservoir was also measured in order to estimate its influence on the network pressure heads. Hydraulic simulations were carried out with the EPANET software version 2.0 applied to a network layout resulted from the system “skeletonization”, achieved by eliminating out of order pipes, integrating pipelines of same diameter and roughness, replacing dead-end branches and small networks supplied by a single junction with an equivalent discharge. After the skeletonizated network was calibrated, several hypothesis of designing and implementing DMA to reduce physical losses were performed, providing adequate operating pressure of the system. Many numerical simulations were performed to guarantee adequate head pressure especially for peak hours demand, break of transmission mains and fire hydrant service. A chlorine residuals analysis was also effected, by simulating the transport and decay of chlorine through the network. District Meter Areas, therefore, were designed, and the corresponding hydraulic and water quality investigations and simulations were carried out. Six District Meter Areas were planned, assembling 14 intercepting valves and 9 pressure reducing valves to prevent the downstream pressure head from exceeding the set value, achieving a remarkable water saving, approximately equal to 34% of the physical losses, corresponding to 16% of system input volume

    Inertial Effects on Finite Length Pipe Seismic Response

    Get PDF
    A seismic analysis for soil-pipe interaction which accounts for length and constraining conditions at the ends of a continuous pipe is developed. The Winkler model is used to schematize the soil-structure interaction. The approach is focused on axial strains, since bending strains in a buried pipe due to the wave propagation are typically a second-order effect. Unlike many works, the inertial terms are considered in solving equations. Accurate numerical simulations are carried out to show the influence of pipe length and constraint conditions on the pipe seismic strain. The obtained results are compared with results inferred from other models present in the literature. For free-end pipelines, inertial effects have significant influence only for short length. On the contrary, their influence is always important for pinned pipes. Numerical simulations show that a simple rigid model can be used for free-end pipes, whereas pinned pipes need more accurate models

    Variability and Trends in Streamflow in Northeast United States

    Get PDF
    Abstract There is general consensus that climate is undergoing change but whether climate change is occurring or not is still being debated in certain scientific, political, and religious quarters. Hydrologic variability influences the design of civil works and assessment of long-term climate change would help improve design criteria. To this end, long-term variability of streamflow was estimated using Shannon entropy. Three statistical tests were applied to determine trends in annual and seasonal daily streamflow with 5% two-sided confidence limit. Daily streamflow data spanning 70 years (from 1943 to 2012) from 669 stream gauge stations located in 23 states in the northeastern part of United States of America, covering six different water regions were employed. The time variability of annual and seasonal daily streamflow was assessed using the Mean Decadal Apportionment Disorder Index ( MDADI ). Analysis showed that in all cases minimum and maximum streamflows had higher variability than average and median streamflows. A significant number of stations exhibited trends. Considering annual minimum, average and median daily streamflows, approximately 50% of the stations followed trends and for almost all these stations trends were increasing. Only for annual maximum daily streamflow, 15% of the stations showed increasing trend and 10% decreasing trend. In terms of geographical distribution, the stations with increasing trend were essentially located along the Atlantic coast and near Great Lakes and in the Upper Mississippi Water Region. Similar considerations apply for seasonal time series as well

    An Application of the Harmony-Search Multi-Objective (HSMO) Optimization Algorithm for the Solution of Pump Scheduling Problem☆

    Get PDF
    Abstract In hydraulic systems, water is often pumped to reach higher elevations, so as to ensure the minimum required pressure and guarantee adequate service level. However, pumps cannot be instantly activated and people do not consume the resource in uniform mode throughout the day. To avoid direct pumping, water can be stored in tanks at a higher elevation, so that it can be supplied whenever there is a higher demand. Because of the significant costs required for pumping, energy-saving in water supply systems is one of the most challenging issues to ensure optimal management of water systems. Careful scheduling of pumping operations may lead not only to energy savings, but alsoto prevent damages, as consequence of reduction of operation times and switches. By means of computer simulation, an optimal schedule of pumps can be achieved using optimization algorithms. In this paper, a harmony-search multi-objective (HSMO) optimization approach is adapted to the pump scheduling problem. The model interfaces with the popular hydraulic solver, EPANET 2.0, to check the hydraulic constraints and to evaluate the performances of the selected schedules. Penalties are introduced in the objective function in case of violation of the hydraulic constraints. The model is applied to a case study, showing that the results are comparable with those of competitive meta-heuristic algorithms (e.g. Genetic Algorithms) and pointing out the suitability of the HSMO algorithm for pumping optimization

    A Model Driven Approach to Water Resource Analysis based on Formal Methods and Model Transformation

    Get PDF
    AbstractSeveral frameworks have been proposed in literature in order to cope with critical infrastructure modelling issues, and almost all rely on simulation techniques. Anyway simulation is not enough for critical systems, where any problem may lead to consistent loss in money and even human lives. Formal methods are widely used in order to enact exhaustive analyses of these systems, but their complexity grows with system dimension and heterogeneity. In addition, experts in application domains could not be familiar with formal modelling techniques. A way to manage complexity of analysis is the use of Model Based Transformation techniques: analysts can express their models in the way they use to do and automatic algorithms translate original models into analysable ones, reducing analysis complexity in a completely transparent way.In this work we describe an automatic transformation algorithm generating hybrid automata for the analysis of a natural water supply system. We use real system located in the South of Italy as case study

    Design and Experimental Performance Characterization of a Three-Blade Horizontal-Axis Hydrokinetic Water Turbine in a Low-Velocity Channel

    Get PDF
    The present work describes the design process of a 3D-printed prototype of a three-blade horizontal-axis hydrokinetic water turbine (HAHWT). The employed blade profile is an EPPLER818, which was previously studied through the Q-Blade software according to the velocity range presumed (v < 1 m/s) in the experiments. The prototype performance was studied in a recirculating water channel at the Polytechnic Engineering School of Mieres (Oviedo University), with a gate of variable height at the channel end, which allows for performing different hydrodynamic scenarios upon varying the considered flow rate. The results show that the extracted power increases due to the equally increased blockage ratio, which represents the ratio between the turbine area and the channel area. However, an excessive increase in the blockage ratio corresponds to a power reduction effect due to the reduction in the effective area and the generation of a two-phase air-water condition

    Standalone vertex ïŹnding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon Ό\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, ΌΌ\mu\mu or eΌe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde
    • 

    corecore