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A seismic analysis for soil-pipe interaction which accounts for length and constraining conditions
at the ends of a continuous pipe is developed. The Winkler model is used to schematize the soil-
structure interaction. The approach is focused on axial strains, since bending strains in a buried
pipe due to the wave propagation are typically a second-order effect. Unlike many works, the
inertial terms are considered in solving equations. Accurate numerical simulations are carried out
to show the influence of pipe length and constraint conditions on the pipe seismic strain. The
obtained results are compared with results inferred from other models present in the literature. For
free-end pipelines, inertial effects have significant influence only for short length. On the contrary,
their influence is always important for pinned pipes. Numerical simulations show that a simple
rigid model can be used for free-end pipes, whereas pinned pipes need more accurate models.

1. Introduction

During seismic events, buried pipeline damages are due to a combination of hazards:
permanent ground deformations (landslides, liquefaction, and seismic settlements) and wave
propagation effects. The latter are characterized by transient strain and curvature in the
ground, due to the travelling wave effects. For the analysis of wave propagation, Newmark
[1] proposed a simple procedure considering a single travelling wave with a constant wave
form. The author assumed that a buried pipeline follows rigidly the motion of the soil.
Consequently, the maximum axial pipe strain is the same as the maximum axial ground
strain.
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Further studies [2–8] indicated that dynamic amplification plays a minor role in the
response of continuous buried pipelines. Therefore, axial strains and curvatures of a buried
pipeline at the passage of a seismic wave can be determined according to the static response of
the pipe [9]. In [10] O’Rourke and El Hmadi developed a procedure to estimate the maximum
axial strain for long straight of buried continuous pipes subjected to seismic propagation
along the longitudinal axis. They concluded that if slippage between the pipe and the
surrounding soil does not occur, the pipe strain is similar to the ground strain, according to
the Newmark approach. On the contrary, if slippage occurs, the Newmark method provides
very conservative values of the pipe axial strain. Others authors [11–16] studied seismic
response of buried pipes schematizing the pipe as a beam on dynamic elastic foundation
and the soil modeled as a bed of springs according to the Winkler model (BDWF—Beam on
Dynamic Winkler Foundation).

Nevertheless, the above-mentioned procedures consider infinite length pipelines and
hence fail to account for their effective lengths and any construction works (constraint
conditions). In [17] O’Rourke et al. developed analytical relations for finite length pipe
subjected to various combinations of end conditions (i.e., free end, pinned, or spring end)
using the concept of pipe development length. De Martino et al. [18–20] and Corrado et al.
[21–24] developed a pipe soil interaction model considering finite length pipe. By assuming
a linear elastic soil and neglecting slippage at the pipe-soil interface, the model analyzes the
dynamic behavior of a finite length pipeline taking into account the boundary conditions
at its ends and the inertia forces (FLBDWF—Finite Length Beam on Dynamic Winkler
Foundation). The pipeline was assumed to be continuous; that is, any variations between
the characteristics of the pipe and those of the joints were assumed negligible.

According to the FLBDWF approach, in this paper numerical simulations are carried
out to assess the pipe dynamic response, showing that the maximum pipe strain strongly
depends on the length and constraint conditions. Results obtained considering free- and
pinned- end conditions are compared with values inferred from models assuming infinite
length pipe and/or neglecting the inertial terms. For free-end pipes, the obtained results agree
with the values inferred from the above-mentioned models only for long pipes, whereas for
short lengths the maximum pipe strain significantly reduces. For pinned ends, neglecting
pipe inertia and considering infinite length pipe underestimates the axial strain, particularly
for short pipes.

In Section 2, the equation governing pipe axial motion is introduced and the
distribution of seismic waves used in numerical simulations is described. Section 3 is devoted
to the analysis of quasi-static condition for finite length pipes with free and pinned ends.
Finite length pipe behavior under dynamic condition is proposed in Section 4.

2. Axial Motions

Consider a pipe of length L, and let U and Ug be the axial displacements of the pipe and
the soil, respectively. By assuming the Winkler model for the elastic soil-structure interaction
(the shear stress induced in the soil is proportional to the relative movement between the
pipe and the soil) and neglecting slippage at the pipe-soil interface, the governing equation
for the axial motions can be written as

m
∂2U

∂T2
− −EA

∂2U

∂X2
+K

(
U −Ug

)
= 0, (2.1)
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Figure 1: Soil-pipe interaction model.

in which X and T are space and time variable, m is the mass per unit length, E Young’s
modulus of the pipe material, A = πs(DE − s) the area of the pipe cross-section, where
s and DE are the thickness and the external diameter of the pipe, respectively, and
K = kwπDE the equivalent spring modulus, in which kw is the soil’s Winkler constant
(Figure 1).

Because there are no accepted methods to predict the actual distribution of seismic
waves [25], most authors assume the conservative hypothesis of Newmark, representing the
soil motion by a single sinusoidal wave. The soil displacement parallel to the pipe can be
written as

Ug =

⎧
⎪⎨

⎪⎩

Ugm sinω

(
T − X

V

)
, if T >

X

V
,

0, otherwise,
(2.2)

where Ugm is the maximum soil displacement and ω is the angular velocity of oscillation
of the seismic wave, given by ω = 2πf , where f is the frequency and V is the apparent
propagation velocity of the seismic wave. In [26, 27] O’Rourke et al. concluded that V
is always greater than the propagation velocity VS of the shear waves (S) in the soil’s
surface strata, equal to VS = (G/ρ)1/2, with G and ρ tangential elasticity modulus and soil
density, respectively. They also proposed a method for determining the apparent propagation
velocity, obtaining V = 2.1 km/s and 3.76 km/s for the 1971 San Fernando and 1979 Imperial
Valley earthquake data, respectively. In [28] Committee on Gas and Liquid Fuel Lifelines
considered that these values would be not appropriate for analysis, because they ignore
changes in the wave shape from one point to other [15]. Consequently, in [14] Manolis et al.
suggested for V values ranging between 1.2 and 3.0 VS.
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3. Neglecting Inertial Terms

3.1. Infinite Length Models

Several authors [2, 4, 8, 10] solved (2.1) neglecting the effects of inertia and assuming free
field condition. According to these hypotheses, (2.1) becomes

∂2U

∂X2
− K

EA

(
U −Ug

)
= 0. (3.1)

By assuming (2.2) for schematizing the soil motion and considering infinite length, the
general solution is

U = BUgm sinω

(
T − X

V

)
, (3.2)

where

B =
K/EA

K/EA + (ω/V )2
. (3.3)

In deriving (3.2), it has been tacitly assumed that U is bounded at infinity.
Pipe strain is equal to

ε = UX = BUgX
, (3.4)

and the ratio between the maximum axial strain of the pipe and of the soil is

εmax

εg max
= B =

K/EA

K/EA + (ω/V )2
. (3.5)

On this basis, the mentioned authors inferred the following conversion factor between
pipe and soil strains

(i) Sakurai and Takahashi:

εmax

εg max
=

1

1 + (ω/ω0)
2(Va/V )2

; (3.6)

(ii) Shinozuka and Koike:

εmax

εg max
=

1

1 + (2π/λ)2AE/K
; (3.7)
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(iii) Nagao et al.:

εmax

εg max
=

1

[2π/(λaλ)]
2 + 1

; (3.8)

(iv) O’Rourke and El Hmadi:

εmax

εg max
=

K/EA

K/EA + [π/(2LS)]
2
, (3.9)

where ω0 =
√
K/ρA, Va =

√
E/ρ, λ is the effective wavelength of the seismic

wave, λa =
√
K/EA, LS = λ/4. Substituting all terms, we can notice that (3.6)–

(3.9) yield the same conversion factor given by (3.3).

3.2. Finite Length Models

All the above authors consider infinite length pipeline and hence fail to account for the pipe
length and end conditions. Neglecting inertial effects, in [17] O’Rourke et al. provided an
upper-bound estimate for pipe strain (ε):

(i) ε = εg = Vg max/V , (the Newmark value), when the ground strain is small, the
wavelength large, the soil relatively stiff and the pipe relatively flexible;

(ii) ε = tuλ/4EA, when the ground strain is large, the wavelength small, the pipe is
relatively stiff and the soil is relatively flexible,

where Vg max is the maximum horizontal ground velocity in the direction of wave propaga-
tion, tu is the friction force per unit length at the soil pipe interface, equal to

tu =
π

2
DEγH(1 + k0) tan

(
kφ

)
, (3.10)

in which H is the cover atop the pipe, γ is the soil unit weight, φ the shear angle, k0 and k
the coefficient of lateral soil pressure at rest and the surface roughness factor [27]. The term
Ld was introduced for assessing which equations to use. Ld represents the length over which
soil friction forces must act to induce a given level of ground strain in the buried pipe, given
by Ld = EAεg/tu. It was assessed

ε =

⎧
⎪⎪⎨

⎪⎪⎩

εg =
Vg max

V
, if Ld <

λ

4
,

tuλ

4EA
, if Ld >

λ

4
.

(3.11)

The equations are modified if the buried pipe has a buried facility at each end [17].
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In this section we examine (3.1). The general solution takes the following form:

U = C1U1 + C2U2 +UP, (3.12)

where C1 and C2 are constants, U1 and U2 are the two independent solutions of the
homogeneous equation, and UP is the particular solution, that is, any solution to (3.1).

By assuming (2.2) for schematizing the soil motion and solving the corresponding
homogeneous equation, the general solution of (3.1) is

U = C1e
X
√

K/EA + C2e
−X
√

K/EA + BUgm sinω

(
T − X

V

)
, (3.13)

with B arbitrary constant, provided by (3.3).
When considering finite length pipe (FLBDWF model), the constants C1 and C2 in

(3.13) are nonzero and their respective values can be calculated according to the boundary
condition. If the constraints at the pipe ends are such as to allow unrestrained deformation
(free ends), the normal force is constant at X = 0 and X = L and therefore

UX = 0, for X = 0, X = L, T > 0. (3.14)

In this case, C1 and C2 can be calculated by solving the following system:

UX(0, T) = C1

√
K

EA
− C2

√
K

EA
− ω

V
BUgm cosωT = 0,

UX(L, T) = C1

√
K

EA
eL
√

K/EA − C2

√
K

EA
e−L

√
K/EA − ω

V
BUgm cosω

(
T − L

V

)
= 0.

(3.15)

If the constraints at both ends of the pipe are such as to prevent all relative movement
between the construction works and the pipe (pinned ends) we get

U = Ugm sinωT, for X = 0, T > 0,

U =

⎧
⎪⎨

⎪⎩

Ugm sinω

(
T − L

V

)
, if T >

L

V
,

0, otherwise,
for X = L, T > 0.

(3.16)
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In this situation, C1 and C2 are given by the system:

U(0, T) = C1 + C2 + BUgm sinωT = Ugm · sinωT,

U(L, T) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C1e
L
√

K/EA + C2e
−L
√

K/EA + BUgm sinω

(
T − L

V

)
= Ugm sinω

(
T − L

V

)
,

if T >
L

V
,

C1e
L
√

K/EA + C2e
−L
√

K/EA = 0, otherwise.
(3.17)

The above systems are quasi-static: it is easy to determine the values of the two
constants for the mentioned boundary conditions, as T varies. For free ends, C1 and C2 are
given by

C1 = C2 +
ωBUgm cos(ωT)

V
√
K/EA

,

C2 =
ωBUgm

(
cosω(T − L/V ) − eL

√
K/EA cos(ωT)

)

V
√
K/EA

(
eL
√

K/EA − e−L
√

K/EA
) ,

(3.18)

and, for pinned ends

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 = −C2 + (1 − B)Ugm sinωT,

C2 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1 − B)Ugm

(
eL
√

K/EA sinωT − sinω(T − L/V )
)

eL
√

K/EA − e−L
√

K/EA
, if T >

L

V
,

(1 − B)eL
√

K/EAUgm sinωT

eL
√

K/EA − e−L
√

K/EA
, otherwise.

(3.19)

The pipe axial displacement and strain for the analyzed boundary conditions can be
easily calculated by substituting the values of C1 and C2 in (3.13).

For analyzing the influence of length on pipe strain, consider a continuous buried
steel pipe, whose characteristics are shown in Table 1. Since steel pipe is considered, welded
joints allow to schematize as continuous the pipeline. It is assumed that the pipe strain
results from seismic wave propagation due to shear waves (S waves) with peak ground
velocity Vg max = 0.50 m/s and an apparent propagation velocity with respect to the ground
surface V = 500 m/s. Hence the maximum soil strain εg is equal to 0.001. All the above-
mentioned procedures are applied to free-free and pin-pin end conditions. The calculations
are carried out by assuming the backfill Winkler constant kw = 10.0 N/cm3. The soil and wave
characteristics are shown in Table 2.

In Table 3 the ratio R between the maximum axial strain of the pipe and of the soil
is shown for three pipe lengths: 25 m, 150 m, and 250 m. The value of R depends on pipe
length and boundary conditions: in particular, assuming finite length pipe with free ends and
neglecting the inertial terms, the result obtained from the proposed approach for short pipe is
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Table 1: Steel pipe characteristics.

E = 2.1·1011 N/m2

Diameter Thickness Weight per unit length
Nominal DN [mm] External DE [mm] s [mm] [N/m]
600 609.6 9.5 1383

Table 2: Soil characteristics.

Backfill Winkler
constant [kw]

Shear wave
velocity [VS]

Apparent shear
wave velocity [V ]

Fundamental period
of oscillation [Tg]

Angular velocity
[ω]

10.0 N/cm3 416.7 m/s 500 m/s 1.4 s 4.49 rad·s−1

Table 3: Ratio R between the maximum axial strain of the pipe and of the soil neglecting inertial terms.

L [m]
Infinite length Finite length

Equations (3.6)–(3.9) O’Rourke et al. FLBDWF
free-free pin-pin free-free pin-pin

25
0.9846

0.0416 1.000 0.3001 0.9980
150 0.2495 1.000 0.9846 0.9922
250 0.4158 1.000 0.9846 0.9922

lower than the value obtained with (3.6)–(3.9), which assumed infinite length pipe and tends
to it for long pipe (250 m). On the contrary, the O’Rourke model yields values of R very low
for the three lengths considered. For pinned ends, the FLBDWF model approximately tends
to O’Rourke model, which coincides with the Newmark one in this case, for all pipe lengths.

4. Considering Inertial Terms

4.1. Infinite Length Models

In [15] Mavridis and Pitilakis solved (2.1) assuming the pipeline to be of infinite length and
the soil homogeneous and viscoelastic. Under such assumptions, (2.1) can be written as

−EA∂2U

∂X2
+m

∂2U

∂T2
+ C

∂U

∂T
+KU = C

∂Ug

∂T
+KUg, (4.1)

where C is a damping factor. Without neglecting the inertial terms, the authors determined
the following conversion factor between pipe and soil strain:

εmax

εg max
=

K + iωC

EA(ω/V )2 +K + iωC −mω2
, (4.2)

where i =
√−1.
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4.2. Finite Length Models

Unlike the models present in the literature, in [23] Corrado et al. consider the inertial terms
in solving (2.1). By using the nondimensional variables x, t, and u(x, t), defined by

x =
X

a
=

X
√
EA/K

, t =
T

b
=

T
√
m/K

, u =
U

Ugm
, (4.3)

and the notations uxx = ∂2u/∂x2, utt = ∂2u/∂t2, (2.1) is rewritten as

utt − uxx + u = ug, (4.4)

in which the forcing term ug is given by

ug =

⎧
⎨

⎩

sinω
(
bt − ax

V

)
, if bt >

ax

V
,

0, otherwise.
(4.5)

Equation (4.4) was integrated with reference to the two boundary conditions (3.14) and
(3.16), which become

ux = 0, for x = 0, x = l, t > 0,

u = sinωbt for x = 0, t > 0, u =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sinω

(
bt − al

V

)
, if bt >

al

V
,

0, otherwise,

for x = l, t > 0,

(4.6)

where l = L/a is the nondimensional pipe length.
The pipe is initially at rest, hence the problem is completed with the following initial

conditions:

u = 0, ut = 0, for 0 ≤ x ≤ l, t = 0. (4.7)

By considering a model problem with known analytical solution, three methods were
tested [23]: MacCormak (MC), Crank-Nicolson (CN), and Courant-Friederichs-Lewy (CFL)
[29]. All methods show an excellent agreement of both U and UX with the exact solution in
the case of free ends pipe. On the contrary, for pinned ends the above-mentioned methods
showed a different behavior in computing the axial strain. The methods provided results in
good agreement with the exact solution U, whereas both MC and CN methods are unsatisfac-
tory for the partial derivative. As an example, in Figures 2 and 3 strains at the time T = 0.001 s
are given for a steel pipe of length L = 25 m, whose characteristics are shown in Table 1.

The calculations are carried out by considering the soil of Table 3 and ΔX equal to
0.01 m. Both free- and pinned-end conditions are simulated. Note that for free ends the
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Figure 2: Approximated and exact solutions: UX (free-end pipe).
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Figure 3: Approximated and exact solutions: UX (pinned pipe).

results concerning UX agree very well with the exact solution: all three methods show a
good accuracy, since there are no discontinuity points. With reference to pinned ends, the
axial strain UX = ε is discontinuous on the wave front; hence much attention is required. UX

is approximated with great accuracy by CFL method, whereas both MC and CN methods
show undesirable oscillations for the strain close to the discontinuous points. Note that strain
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Table 4: Ratio R between the maximum axial strain of the pipe and of the soil.

L [m]

No inertial terms Inertial terms

Infinite length Finite length Infinite length Finite length

Equations (3.6)–(3.9) O’Rourke et al. FLBDWF Mavridis and Pitilakis FLBDWF

free-free pin-pin free-free pin-pin free-free pin-pin

25
0.9846

0.0416 1.000 0.3001 0.9980
0.9847

0.3021 1.2844

150 0.2495 1.000 0.9846 0.9922 0.9792 1.2053

250 0.4158 1.000 0.9846 0.9922 0.9861 1.1955

rather than displacement influences pipe seismic response. Seismic-induced stress can indeed
be calculated according to the following relation:

σ = Eε, (4.8)

and it can dramatically increase the pipe tensional state. Thus, the Courant-Friederichs-Lewy
method is used to analyze the dynamic response of a continuous pipe.

A comparison between all the above-mentioned models is developed for the two
boundary conditions applied to a continuous buried steel pipe, whose characteristics are
shown in Table 1. In Table 4 the ratio R between the maximum axial strain of the pipe and
of the soil is shown. When assuming infinite pipe length, R takes similar values in both
situations: accounting for inertial terms as well as neglecting inertial terms. By considering
finite pipe, R strongly depends on the pipe constraints and length. For free ends, the FLBDWF
model applied considering inertial terms yields values that agree very well with those
inferred from the FLBDWF applied neglecting pipe inertia, regardless of the length. On the
contrary, pinned pipes present strains always greater than soil ones. R reduces at increasing
pipe length. So, for free pipes the FLBDWF model yields same values both considering and
neglecting the inertial terms. For pinned pipes the values are different, in particular, R is
greater when the inertial terms are taken into account. This can be explained considering
Figures 4 and 5, where pipe strains are plotted as X varies for four time values and for
both boundary conditions. Note that for pinned-end pipe the strain is discontinuous on the
wave front, as above mentioned. This discontinuity depends on pipe (m,DE), soil (kw), and
earthquake (ω) characteristics. In Figure 6, R was plotted as pipe weight per unit length
varies. Note that when pipe weight per unit length reduces, R tends to the value obtained
applying the FLBDWF model neglecting the inertial terms, that is, to the value inferred from
a rigid model. Then, when considering infinite pipe, the models available in the literature,
both those that neglect and those that account for pipe inertia, underestimate seismic strain
for pinned pipes, above all for short lengths.

The results confirm that the pipe behavior under seismic action is strongly influenced
by the boundary conditions and pipe length. From a technical point of view, the rigid model
allows a conservative estimation of the seismic strain for free-end pipe, since the maximum
ground strain exceeds the maximum pipe strain. That is not true for pinned pipes, for which
only a FLBDWF can properly account for the actual boundary condition. An infinite length
model could underestimate the maximum strain when the pipes are ground-anchored, thus
leading to unsafe design.
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Figure 4: Pipe strain as X varies (free-end pipe).
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Figure 5: Pipe strain as X varies (pinned pipe).

5. Conclusions

In the present paper, the authors analyze the effects of seismic events on the axial motions
of finite length continuous pipes taking into account inertial terms. Results show that the
maximum strain of the pipe strongly depends on the pipe length and constraints. For free
long pipes, the maximum pipe strain is slightly lower than the maximum ground strain.
Within this range, the calculated strains are the same as the values inferred from the models
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Figure 6: Ratio R between the maximum axial strain of the pipe and of the soil as weight per unit length
varies (pinned pipe).

discussed by authors which assume infinite pipe and neglect the effect of inertia. On the
contrary, the maximum pipe strain significantly reduces as the pipe length reduces. Therefore
numerical results emphasize that for free-end pipes a BDWF (or rigid) model can be applied
for long pipes.

For pinned pipes, the rigid model underestimates the axial strain. According to the
proposed approach, the maximum pipe strain strongly exceeds the soil strain and hence the
FLBDWF model allows a more accurate estimate of the pipe seismic stress considering pipe
length, boundary conditions, and inertial terms.
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