192 research outputs found

    Flexural dynamic response of monopile foundations under linear wave loads

    Get PDF
    An analytical solution for the dynamic response of submerged slender circular cylindrical structures subjected to linear wave loads is presented. A double Laplace transform with respect to temporal and spatial variables is applied both to motion equation and boundary conditions. The dynamic deflection of the beam is obtained by inversion of the Laplace transform. The latter with respect to spatial variable is obtained analytically, while the one concerning the temporal variable is numerically calculated using Durbin numerical scheme. Results in the case of a representative example for a monopile foundation subjected to Airy waves are presented and discussed, and the analytical result is compared against numerical dynamic and static solutionspublishedVersio

    Electromechanical Delay of the Knee Flexor Muscles Is Impaired After Harvesting Hamstring Tendons for Anterior Cruciate Ligament Reconstruction

    Get PDF
    Background Changes in electromechanical delay during muscle activation are expected when there are substantial alterations in the structural properties of the musculotendinous tissue. In anterior cruciate ligament reconstruction, specific tendons are being harvested for grafts. Thus, there is an associated scar tissue development at the tendon that may affect the corresponding electromechanical delay. Purpose This study was conducted to investigate whether harvesting of semitendinosus and gracilis tendons for anterior cruciate ligament reconstruction will affect the electromechanical delay of the knee flexors. Study Design Case-control study; Level of evidence, 3. Methods The authors evaluated 12 patients with anterior cruciate ligament reconstruction with a semitendinosus and gracilis autograft, 2 years after the reconstruction, and 12 healthy controls. Each participant performed 4 maximally explosive isometric contractions with a 1-minute break between contractions. The surface electromyographic activity of the biceps femoris and the semitendinosus was recorded from both legs during the contractions. Results The statistical comparisons revealed significant increases of the electromechanical delay of the anterior cruciate ligament–reconstructed knee for both investigated muscles. Specifically, the electromechanical delay values were increased for both the biceps femoris (P = .029) and the semitendinosus (P = .005) of the reconstructed knee when compared with the intact knee. Comparing the anterior cruciate ligament–reconstructed knee against healthy controls revealed similar significant differences for both muscles (semitendinosus, P = .011; biceps femoris, P = .024). Conclusion The results showed that harvesting the semitendinosus and gracilis tendons for anterior cruciate ligament reconstruction significantly increased the electromechanical delay of the knee flexors. Increased hamstring electromechanical delay might impair knee safety and performance by modifying the transfer time of muscle tension to the tibia and therefore affecting muscle response during sudden movements in athletic activities. However, further investigation is required to identify whether the increased electromechanical delay of the hamstrings can actually influence optimal sports performance and increase the risk for knee injury in athletes with anterior cruciate ligament reconstructions

    Electromechanical Delay of the Knee Flexor Muscles After Harvesting the Hamstrings for Anterior Cruciate Ligament Reconstruction

    Get PDF
    Objective: To investigate if harvesting of semitendinosus (ST) and gracilis for anterior cruciate ligament (ACL) reconstruction will have an effect in coordinative firing pattern of the hamstrings under fatigue. We hypothesized that fatigue will increase the electromechanical delay (EMD) of the hamstrings on the harvested site and impair the synchronization between the medial and lateral hamstrings, in terms of muscle activity onsets. Design: Prospective nonrandomized study. Setting: Institutional. Patients: Twelve ACL reconstructed patients with hamstrings, 2 years postoperatively. Interventions: The patients performed a fatigue protocol with 25 continuous maximal isometric voluntary contractions of 8-second duration with 2-second intervals. Main Outcome Measures: The electromyography activity of biceps femoris (BF) and ST was recorded bilaterally and simultaneously with the torque measurements. The dependent variable examined was the EMD difference between BF and ST (muscle activation pattern). Results: The fatigue protocol caused significant differences for the EMD values for both the intact and the reconstructed leg, demonstrating the influence of fatigue in EMD. However, the synchronization pattern between the medial and lateral hamstrings did not change significantly throughout the fatiguing protocol, revealing a balanced effect of fatigue. Conclusions: Although the EMD of ST and BF was significantly increased due to fatigue, as expected, their synchronization pattern as identified by the difference in their EMDs remained the same. Thus, the reconstructed knee responded in a balanced manner and the hamstrings firing pattern remained the same, despite the intervention to the ST tendon

    Knee braces can decrease tibial rotation during pivoting that occurs in high demanding activities

    Get PDF
    Purpose The purpose of this study was to investigate whether knee braces could effectively decrease tibial rotation during high demanding activities. Methods Using an in vivo three-dimensional kinematic analysis, 21 physically active, healthy, male subjects were evaluated. Each subject performed two tasks that were used extensively in the literature because they combine increased rotational and translational loads on the knee, (1) descending from a stair and subsequent pivoting and (2) landing from a platform and subsequent pivoting under three conditions: (A) wearing a prophylactic brace (braced), (B) wearing a patellofemoral brace (sleeved), and (C) unbraced condition. Results In the first task, tibial rotation during the pivoting phase was significantly decreased in the braced condition as compared to the sleeved condition (P = 0.019) and the non-braced condition (P = 0.002). In the second task, the same variable was significantly decreased in the braced condition as compared to the sleeved (P = 0.001) and the unbraced condition (P \u3c 0.001). The sleeved condition also produced significantly decreased tibial rotation with respect to the unbraced condition (P = 0.021). Conclusions Bracing decreased tibial rotation in activities where increased translational and rotational forces were applied. Because knee braces decreased tibial rotation, they can possibly be used with ACL-reconstructed and ACL-deficient patients to prevent such problems. Level of evidence Case–control study, Level III

    Measurement of nuclear modification factors of gamma(1S)), gamma(2S), and gamma(3S) mesons in PbPb collisions at root s(NN)=5.02 TeV

    Get PDF
    The cross sections for ϒ(1S), ϒ(2S), and ϒ(3S) production in lead-lead (PbPb) and proton-proton (pp) collisions at √sNN = 5.02 TeV have been measured using the CMS detector at the LHC. The nuclear modification factors, RAA, derived from the PbPb-to-pp ratio of yields for each state, are studied as functions of meson rapidity and transverse momentum, as well as PbPb collision centrality. The yields of all three states are found to be significantly suppressed, and compatible with a sequential ordering of the suppression, RAA(ϒ(1S)) > RAA(ϒ(2S)) > RAA(ϒ(3S)). The suppression of ϒ(1S) is larger than that seen at √sNN = 2.76 TeV, although the two are compatible within uncertainties. The upper limit on the RAA of ϒ(3S) integrated over pT, rapidity and centrality is 0.096 at 95% confidence level, which is the strongest suppression observed for a quarkonium state in heavy ion collisions to date. © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.Peer reviewe

    Electroweak production of two jets in association with a Z boson in proton-proton collisions root s =13 TeV

    Get PDF
    A measurement of the electroweak (EW) production of two jets in association with a Z boson in proton-proton collisions at root s = 13 TeV is presented, based on data recorded in 2016 by the CMS experiment at the LHC corresponding to an integrated luminosity of 35.9 fb(-1). The measurement is performed in the lljj final state with l including electrons and muons, and the jets j corresponding to the quarks produced in the hard interaction. The measured cross section in a kinematic region defined by invariant masses m(ll) > 50 GeV, m(jj) > 120 GeV, and transverse momenta P-Tj > 25 GeV is sigma(EW) (lljj) = 534 +/- 20 (stat) fb (syst) fb, in agreement with leading-order standard model predictions. The final state is also used to perform a search for anomalous trilinear gauge couplings. No evidence is found and limits on anomalous trilinear gauge couplings associated with dimension-six operators are given in the framework of an effective field theory. The corresponding 95% confidence level intervals are -2.6 <cwww/Lambda(2) <2.6 TeV-2 and -8.4 <cw/Lambda(2) <10.1 TeV-2. The additional jet activity of events in a signal-enriched region is also studied, and the measurements are in agreement with predictions.Peer reviewe

    Bose-Einstein correlations of charged hadrons in proton-proton collisions at s\sqrt s = 13 TeV

    Get PDF
    Bose-Einstein correlations of charged hadrons are measured over a broad multiplicity range, from a few particles up to about 250 reconstructed charged hadrons in proton-proton collisions at s \sqrt{s} = 13 TeV. The results are based on data collected using the CMS detector at the LHC during runs with a special low-pileup configuration. Three analysis techniques with different degrees of dependence on simulations are used to remove the non-Bose-Einstein background from the correlation functions. All three methods give consistent results. The measured lengths of homogeneity are studied as functions of particle multiplicity as well as average pair transverse momentum and mass. The results are compared with data from both CMS and ATLAS at s \sqrt{s} = 7 TeV, as well as with theoretical predictions.[graphic not available: see fulltext]Bose-Einstein correlations of charged hadrons are measured over a broad multiplicity range, from a few particles up to about 250 reconstructed charged hadrons in proton-proton collisions at s=\sqrt{s} = 13 TeV. The results are based on data collected using the CMS detector at the LHC during runs with a special low-pileup configuration. Three analysis techniques with different degrees of dependence on simulations are used to remove the non-Bose-Einstein background from the correlation functions. All three methods give consistent results. The measured lengths of homogeneity are studied as functions of particle multiplicity as well as average pair transverse momentum and mass. The results are compared with data from both CMS and ATLAS at s=\sqrt{s} = 7 TeV, as well as with theoretical predictions

    Search for an L-mu - L-tau gauge boson using Z -> 4 mu events in proton-proton collisions at root s=13 TeV

    Get PDF
    A search for a narrow Z' gauge boson with a mass between 5 and 70 GeV resulting from an L-mu - L-tau U (1) local gauge symmetry is reported. Theories that predict such a particle have been proposed as an explanation of various experimental discrepancies, including the lack of a dark matter signal in direct-detection experiments, tension in the measurement of the anomalous magnetic moment of the muon, and reports of possible lepton flavor universality violation in B meson decays. A data sample of proton-proton collisions at a center-of-mass energy of 13 TeV is used, corresponding to an integrated luminosity of 77.3 fb(-1) recorded in 2016 and 2017 by the CMS detector at the LHC. Events containing four muons with an invariant mass near the standard model Z boson mass are analyzed, and the selection is further optimized to be sensitive to the events that may contain Z -> Z'mu mu -> 4 mu decays. The event yields are consistent with the standard model predictions. Upper limits of 10(-8)-10(-7) at 95% confidence level are set on the product of branching fractions B(Z -> Z'mu mu)B(Z' -> mu mu), depending on the Z' mass, which excludes a Z' boson coupling strength to muons above 0.004-0.3. These are the first dedicated limits on L-mu - L-tau models at the LHC and result in a significant increase in the excluded model parameter space. The results of this search may also be used to constrain the coupling strength of any light Z' gauge boson to muons. (C) 2019 The Author(s). Published by Elsevier B.V.Peer reviewe
    corecore