11 research outputs found

    The group galaxy population through the cosmic time

    Get PDF
    One of the most fundamental correlations between the properties of galaxies in the local Universe is the so-called morphology-density relation (Dressler 1980). A plethora of studies utilizing multi-wavelength tracers of activity have shown that late type star forming galaxies favour low density regions in the local Universe (e.g. GÂŽomez et al. 2003). In particular, the cores of massive galaxy clusters are galaxy graveyards full of massive spheroids that are dominated by old stellar populations. A variety of physical processes might be effective in suppressing star formation and affecting the morphology of cluster and group galaxies. Broadly speaking, these can be grouped in two big families: (i) interactions with other cluster members and/or with the cluster gravitational potential and (ii) interactions with the hot gas that permeates massive galaxy systems. Galaxy groups are the most common galaxy environment in our Universe, bridging the gap between the low density field and the crowded galaxy clusters. Indeed, as many as 50%-70% of galaxies reside in galaxy groups in the nearby Universe (Huchra & Geller 1982; Eke et al. 2004), while only a few percent are contained in the denser cluster cores. In addition, in the current bottom-up paradigm of structure formation, galaxy groups are the building blocks of more massive systems: they merge to form clusters. As structures grow, galaxies join more and more massive systems, spending most of their life in galaxy groups before entering the cluster environment. Thus, it is plausible to ask if group-related processes may drive the observed relations between galaxy properties and their environment. To shed light on this topic we have built the largest X-ray selected samples of galaxy groups with secure spectroscopic identification on the major blank field surveys. For this purpose, we combine deep X-ray Chandra and XMM data of the four major blank fields (All-wavelength Extended Groth Strip International Survey (AEGIS), the COSMOS field, the Extended Chandra Deep Field South (ECDFS), and the Chandra Deep Field North (CDFN) ). The group catalog in each field is created by associating any X-ray extended emission to a galaxy overdensity in the 3D space. This is feasible given the extremely rich spectroscopic coverage of these fields. Our identification method and the dynamical analysis used to identify the galaxy group members and to estimate the group velocity dispersion is extensively tested on the AEGIS field and with mock catalogs extracted from the Millennium Simulation (Springel et al. 2005). The effect of dynamical complexity, substructure, shape of X-ray emission, different radial and redshift cuts have been explored on the LX −sigma relation. We also discover a high redshift group at z~1.54 in the AEGIS field. This detection illustrates that mega-second Chandra exposures are required for detecting such objects in the volume of deep fields. We provide an accurate measure of the Star Formation Rate (SFR) of galaxies by using the deepest available Herschel PACS and Spitzer MIPS data available for the considered fields. We also provide a well-calibrated estimate of the SFR derived by using the SED fitting technique for undetected sources in mid- and far-infrared observations. Using this unique sample, we conduct a comprehensive analysis of the dependence of the total SFR , total stellar masses and halo occupation distribution (HOD) of massive galaxies (M*>10^10 M_sun) on the halo mass of the groups with rigorous consideration of uncertainties. We observe a clear evolution in the level of star formation (SF) activity in galaxy groups. Indeed, the total star formation activity in high redshift (0.5<z<1.1) groups is higher with respect to the low redshift (0.15<z<0.5) sample at any mass by almost 0.8 ± 0.1 dex. A milder difference (0.35 ± 0.1 dex) is observed between the [0.15-0.5] redshift bin and the groups at z < 0.085. This evolution seems to be much faster than the one observed in the whole galaxy population dominated by lower mass halos. This would imply that the level of SF activity is declining more rapidly since z~1.1 in the more massive halos than in the more common lower mass halos, confirming a “halo downsizing” effect as discussed already in Popesso et al. (2012). The HOD and the total stellar mass-M200 relation are consistent with a linear relation in any redshift bin in the M_200 range considered in our analysis. We do not observe any evolution in the HOD since z~1.1. Similarly we do not observe evolution in the relation between the total stellar mass of the groups and the total mass, in agreement with the results of Giodini et al (2012). The picture emerging from our findings is that massive groups at M_200~10^13−14 M_sun have already accreted the same amount of mass and have the same number of galaxies as the low redshift counterpart, as predicted by Stewart et al. (2008). This implies that the most evident evolution of the galaxy population of the most massive systems acts in terms of quenching their galaxy star formation activity. The analysis of the evolution of the fraction of SF galaxies as a function of halo mass or velocity dispersion show that high mass systems seem to be already evolved at z~1 by showing a fraction of star forming galaxies consistent with the low redshift counterpart at z < 0.085. Given the almost linear relation between the total SFR and M_200 in the high-z sample, this implies that most of the contribution to the total SFR of the most massive systems (M_200~ 10^14 M_sun) is given by few highly star forming galaxies, while in lower mass systems (M_200~10^13 M_sun) is given by many galaxies of average activity. This would be an additional sign of a faster evolution in the more massive systems in terms of star formation activity with respect to lower mass groups. Thus, it would confirm the “halo downsizing” effect. The comparison of our results with the prediction of the Millennium Simulation semi-analytical model confirms the known problem of the models. We confirm the strong bias due to the “satellite overquenching” problem in suppressing significantly the SF activity of group galaxies (more than an order of magnitude) at any redshift with respect to observations. The HOD predicted by the simulations is remarkably in agreement with the observations. But due to the low SF activity of galaxies in massive halos, the models predict also a lower total stellar mass in groups with respect to the observed one at any redshift. In order to compare the SF activity level of galaxies in different environment, we also define a sample of field galaxies and “filament-like” galaxies. This is done by using the galaxy density field to find isolated galaxies (field) and galaxies in high density region but not associated to any group or more generically to an X-ray extended emission. These two classes of environment in addition to the galaxy group sample are used to study the location of galaxies in SFR-mass plane since z~1.1 as a function of the environment. Indeed, several studies have already shown there is a tight correlation between the SFR and the stellar masses of the bulk of the star forming galaxy population at least over the past 10 Gyr. Quiescent galaxies are mainly located under this main sequence (MS) and in a more scattered cloud. Our analysis shows that the Main Sequence of star forming galaxies in the two redshift bins considered (0.15 10^10.4−10.6 M_sun). Above this limit, the galaxy SFR has a very weak dependence on the stellar mass. This flattening, to different extent, is present in all environments. At low redshift, group galaxies tend to deviate more from the mean MS towards the region of quiescence with respect to isolated and filament-like galaxies. This environment dependent location of low redshift group galaxies with respect to the mean MS causes the increase of the dispersion of the distribution of galaxies around the MS as a function of the stellar mass. At high redshift we do not find significant evidence for a differential location of galaxies with respect to the MS as a function of the environment. Indeed, in this case we do not observe a significant increase of the dispersion of the distribution of galaxies around the MS as a function of the stellar mass. We do not find evidence for a differential distribution in the morphological type of MS galaxies in different environments. Instead, we observe a much stronger dependence of the mean SÂŽersic index on the stellar mass. These results suggest that star formation quenching in group galaxies is not due to galaxy structural transformations. It also suggests that while morphology of MS galaxies is more stellar mass dependent, star formation quenching is mostly environment dependent. We conclude that the membership to a massive halo is a key ingredient in the galaxy evolution and that this acts in terms of star formation quenching in group sized halos

    Brightest Group Galaxies : Stellar Mass and Star Formation Rate (paper I)

    Get PDF
    We study the distribution and evolution of the stellar mass and the star formation rate (SFR) of the brightest group galaxies (BGGs) over 0.04 <z <1.3 using a large sample of 407 X-ray galaxy groups selected from the COSMOS, AEGIS, and XMM-LSS fields. We compare our results with predictions from the semi-analytic models based on the Millennium simulation. In contrast to model predictions, we find that, as the Universe evolves, the stellarmass distribution evolves towards a normal distribution. This distribution tends to skew to low-mass BGGs at all redshifts implying the presence of a star-forming population of the BGGs with M-S similar to 10(10.5) M-circle dot which results in the shape of the stellar mass distribution deviating from a normal distribution. In agreement with the models and previous studies, we find that the mean stellar mass of BGGs grows with time by a factor of similar to 2 between z = 1.3 and z = 0.1, however, the significant growth occurs above z = 0.4. The BGGs are not entirely a dormant population of galaxies, as low-mass BGGs in low-mass haloes are more active in forming stars than the BGGs in more massive haloes, over the same redshift range. We find that the average SFR of the BGGs evolves steeply with redshift and fraction of the passive BGGs increases as a function of increasing stellar mass and halo mass. Finally, we show that the specific SFR of the BGGs within haloes with M-200Peer reviewe

    Chandra centres for COSMOS X-ray galaxy groups : differences in stellar properties between central dominant and offset brightest group galaxies

    Get PDF
    We present the results of a search for galaxy clusters and groups in the ∌2 deg2 of the COSMOS field using all available X-ray observations from the XMM-Newton and Chandra observatories.We reach an X-ray flux limit of 3 × 10−16 erg cm−2 s−1 in the 0.5-2 keV range, and identify 247 X-ray groups with M200c = 8 × 1012-3 × 1014M at a redshift range of 0.08 ≀ z < 1.53, using the multiband photometric redshift and the master spectroscopic redshift catalogues of the COSMOS. The X-ray centres of groups are determined using high-resolution Chandra imaging. We investigate the relations between the offset of the brightest group galaxies (BGGs) from halo X-ray centre and group properties and compare with predictions from semi-analytic models and hydrodynamical simulations. We find that BGG offset decreases with both increasing halo mass and decreasing redshift with no strong dependence on the X-ray flux and SNR. We show that the BGG offset decreases as a function of increasing magnitude gap with no considerable redshift-dependent trend. The stellar mass of BGGs in observations extends over a wider dynamic range compared to model predictions. At z < 0.5, the central dominant BGGs become more massive than those with large offsets by up to 0.3 dex, in agreement with model prediction. The observed and predicted log-normal scatter in the stellar mass of both low- and large-offset BGGs at fixed halo mass is ∌0.3 dex.Peer reviewe

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17)

    The 16th Data Release of the Sloan Digital Sky Surveys : First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17).Peer reviewe

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V
    corecore