2,412 research outputs found
Dielectron Measurements in STAR
Ultrarelativistic heavy-ion collisions provide a unique environment to study
the properties of strongly interacting matter. Dileptons, which are not
affected by the strong interactions, are an ideal penetrating probe. We present
the dielectron results for p+p and Au+Au collisions at \sqrt{s_\mathrm{NN}}}
=200 GeV, as measured by the STAR experiment. We discuss the prospects of
dilepton measurements with the near-future detector upgrades, and the recent
lower beam energy Au+Au measurements.Comment: Resonance Workshop at UT Austin (2012), 8 pages,15 figure
White Matter Lesions Are Not Related to β-Amyloid Deposition in an Autopsy-Based Study
Population-based studies have investigated the relation between β-amyloid levels in cerebrospinal fluid or plasma and white matter lesions (WMLs). However, these circulating levels of β-amyloid in cerebrospinal fluid or plasma may not reliably reflect the actual degree of amyloid present in the brain. Therefore, we investigated the relation between WMLs and β-amyloid plaques and amyloid angiopathy in brain tissue. WML on MRI or CT were rated in 28 nondemented patients whose neuroimaging was available prior to death. β-amyloid in plaques and arterioles were immunohistochemically stained and quantified in postmortem brain necropsies. WMLs were present in 43% of the total population. Both cortex and periventricular region showed no differences for β-amyloid deposition in either plaques or blood vessel walls in patients with WMLs compared to those without WMLs. Thus, our results indicate that there is no relation between the degree of WMLs and β-amyloid deposition in the brain
SGLT2 inhibition versus sulfonylurea treatment effects on electrolyte and acid-base balance:secondary analysis of a clinical trial reaching glycemic equipoise: Tubular effects of SGLT2 inhibition in Type 2 diabetes
Sodium-glucose transporter (SGLT)2 inhibitors increase plasma magnesium and plasma phosphate and may cause ketoacidosis, but the contribution of improved glycemic control to these observations as well as effects on other electrolytes and acid-base parameters remain unknown. Therefore, our objective was to compare the effects of SGLT2 inhibitors dapagliflozin and sulfonylurea gliclazide on plasma electrolytes, urinary electrolyte excretion, and acid-base balance in people with Type 2 diabetes (T2D). We assessed the effects of dapagliflozin and gliclazide treatment on plasma electrolytes and bicarbonate, 24-hour urinary pH and excretions of electrolytes, ammonium, citrate, and sulfate in 44 metformin-treated people with T2D and preserved kidney function. Compared with gliclazide, dapagliflozin increased plasma chloride by 1.4 mmol/l (95% CI 0.4-2.4), plasma magnesium by 0.03 mmol/l (95% CI 0.01-0.06), and plasma sulfate by 0.02 mmol/l (95% CI 0.01-0.04). Compared with baseline, dapagliflozin also significantly increased plasma phosphate, but the same trend was observed with gliclazide. From baseline to week 12, dapagliflozin increased the urinary excretion of citrate by 0.93 ¹ 1.72 mmol/day, acetoacetate by 48 Οmol/day (IQR 17-138), and β-hydroxybutyrate by 59 Οmol/day (IQR 0-336), without disturbing acid-base balance. In conclusion, dapagliflozin increases plasma magnesium, chloride, and sulfate compared with gliclazide, while reaching similar glucose-lowering in people with T2D. Dapagliflozin also increases urinary ketone excretion without changing acid-base balance. Therefore, the increase in urinary citrate excretion by dapagliflozin may reflect an effect on cellular metabolism including the tricarboxylic acid cycle. This potentially contributes to kidney protection
Inter- and Intra-Observer Variability and the Effect of Experience in Cine-MRI for Adhesion Detection
Cine-MRI for adhesion detection is a promising novel modality that can help the large group of patients developing pain after abdominal surgery. Few studies into its diagnostic accuracy are available, and none address observer variability. This retrospective study explores the inter- and intra-observer variability, diagnostic accuracy, and the effect of experience. A total of 15 observers with a variety of experience reviewed 61 sagittal cine-MRI slices, placing box annotations with a confidence score at locations suspect for adhesions. Five observers reviewed the slices again one year later. Inter- and intra-observer variability are quantified using Fleissâ (inter) and Cohenâs (intra) Îş and percentage agreement. Diagnostic accuracy is quantified with receiver operating characteristic (ROC) analysis based on a consensus standard. Inter-observer Fleissâ Îş values range from 0.04 to 0.34, showing poor to fair agreement. High general and cine-MRI experience led to significantly (p < 0.001) better agreement among observers. The intra-observer results show Cohenâs Îş values between 0.37 and 0.53 for all observers, except one with a low Îş of â0.11. Group AUC scores lie between 0.66 and 0.72, with individual observers reaching 0.78. This study confirms that cine-MRI can diagnose adhesions, with respect to a radiologist consensus panel and shows that experience improves reading cine-MRI. Observers without specific experience adapt to this modality quickly after a short online tutorial. Observer agreement is fair at best and area under the receiver operating characteristic curve (AUC) scores leave room for improvement. Consistently interpreting this novel modality needs further research, for instance, by developing reporting guidelines or artificial intelligence-based methods
Measurements of the properties of Lambda_c(2595), Lambda_c(2625), Sigma_c(2455), and Sigma_c(2520) baryons
We report measurements of the resonance properties of Lambda_c(2595)+ and
Lambda_c(2625)+ baryons in their decays to Lambda_c+ pi+ pi- as well as
Sigma_c(2455)++,0 and Sigma_c(2520)++,0 baryons in their decays to Lambda_c+
pi+/- final states. These measurements are performed using data corresponding
to 5.2/fb of integrated luminosity from ppbar collisions at sqrt(s) = 1.96 TeV,
collected with the CDF II detector at the Fermilab Tevatron. Exploiting the
largest available charmed baryon sample, we measure masses and decay widths
with uncertainties comparable to the world averages for Sigma_c states, and
significantly smaller uncertainties than the world averages for excited
Lambda_c+ states.Comment: added one reference and one table, changed order of figures, 17
pages, 15 figure
Measurement of the Forward-Backward Asymmetry in the B -> K(*) mu+ mu- Decay and First Observation of the Bs -> phi mu+ mu- Decay
We reconstruct the rare decays , , and in a data sample
corresponding to collected in collisions at
by the CDF II detector at the Fermilab Tevatron
Collider. Using and decays we report the branching ratios. In addition, we report
the measurement of the differential branching ratio and the muon
forward-backward asymmetry in the and decay modes, and the
longitudinal polarization in the decay mode with respect to the squared
dimuon mass. These are consistent with the theoretical prediction from the
standard model, and most recent determinations from other experiments and of
comparable accuracy. We also report the first observation of the {\mathcal{B}}(B^0_s \to
\phi\mu^+\mu^-) = [1.44 \pm 0.33 \pm 0.46] \times 10^{-6}27 \pm 6B^0_s$ decay observed.Comment: 7 pages, 2 figures, 3 tables. Submitted to Phys. Rev. Let
Search for a New Heavy Gauge Boson Wprime with Electron + missing ET Event Signature in ppbar collisions at sqrt(s)=1.96 TeV
We present a search for a new heavy charged vector boson decaying
to an electron-neutrino pair in collisions at a center-of-mass
energy of 1.96\unit{TeV}. The data were collected with the CDF II detector
and correspond to an integrated luminosity of 5.3\unit{fb}^{-1}. No
significant excess above the standard model expectation is observed and we set
upper limits on . Assuming standard
model couplings to fermions and the neutrino from the boson decay to
be light, we exclude a boson with mass less than
1.12\unit{TeV/}c^2 at the 95\unit{%} confidence level.Comment: 7 pages, 2 figures Submitted to PR
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Performance and Operation of the CMS Electromagnetic Calorimeter
The operation and general performance of the CMS electromagnetic calorimeter
using cosmic-ray muons are described. These muons were recorded after the
closure of the CMS detector in late 2008. The calorimeter is made of lead
tungstate crystals and the overall status of the 75848 channels corresponding
to the barrel and endcap detectors is reported. The stability of crucial
operational parameters, such as high voltage, temperature and electronic noise,
is summarised and the performance of the light monitoring system is presented
The Origin and Nature of Tightly Clustered BTG1 Deletions in Precursor B-Cell Acute Lymphoblastic Leukemia Support a Model of Multiclonal Evolution
Recurrent submicroscopic deletions in genes affecting key cellular pathways are a hallmark of pediatric acute lymphoblastic leukemia (ALL). To gain more insight into the mechanism underlying these deletions, we have studied the occurrence and nature of abnormalities in one of these genes, the B-cell translocation gene 1 (BTG1), in a large cohort of pediatric ALL cases. BTG1 was found to be exclusively affected by genomic deletions, which were detected in 65 out of 722 B-cell precursor ALL (BCP-ALL) patient samples (9%), but not in 109 T-ALL cases. Eight different deletion sizes were identified, which all clustered at the telomeric site in a hotspot region within the second (and last) exon of the BTG1 gene, resulting in the expression of truncated BTG1 read-through transcripts. The presence of V(D)J recombination signal sequences at both sites of virtually all deletions strongly suggests illegitimate RAG1/RAG2-mediated recombination as the responsible mechanism. Moreover, high levels of histone H3 lysine 4 trimethylation (H3K4me3), which is known to tether the RAG enzyme complex to DNA, were found within the BTG1 gene body in BCP-ALL cells, but not T-ALL cells. BTG1 deletions were rarely found in hyperdiploid BCP-ALLs, but were predominant in other cytogenetic subgroups, including the ETV6-RUNX1 and BCR-ABL1 positive BCP-ALL subgroups. Through sensitive PCR-based screening, we identified multiple additional BTG1 deletions at the subclonal level in BCP-ALL, with equal cytogenetic distribution which, in some cases, grew out into the major clone at relapse. Taken together, our results indicate that BTG1 deletions may act as âdriversâ of leukemogenesis in specific BCP-ALL subgroups, in which they can arise independently in multiple subclones at sites that are prone to aberrant RAG1/RAG2-mediated recombination events. These findings provide further evidence for a complex and multiclonal evolution of ALL
- âŚ