525 research outputs found

    Interplay of growth mode and thermally induced spin accumulation in epitaxial Al/Co2_2TiSi/Al and Al/Co2_2TiGe/Al contacts

    Full text link
    The feasibility of thermally driven spin injectors built from half-metallic Heusler alloys inserted between aluminum leads was investigated by means of {\em ab initio} calculations of the thermodynamic equilibrium and electronic transport. We have focused on two main issues and found that: (i) the interface between Al and the closely lattice-matched Heusler alloys of type Co2_2TiZZ (Z=Z= Si or Ge) is stable under various growth conditions; and (ii) the conventional and spin-dependent Seebeck coefficients in such heterojunctions exhibit a strong dependence on both the spacer and the atomic composition of the Al/Heusler interface. The latter quantity gives a measure of the spin accumulation and varies between +8+8~μ\muV/K and 3-3~μ\muV/K near 300300~K, depending on whether a Ti-Ge or a Co-Co plane makes the contact between Al and Co2_2TiGe in the trilayer. Our results show that it is in principle possible to tailor the spin-caloric effects by a targeted growth control of the samples.Comment: 16 pages, 13 figure

    Principles of Economic Evaluation in a Pandemic Setting: An Expert Panel Discussion on Value Assessment During the Coronavirus Disease 2019 Pandemic

    Get PDF
    As the coronavirus disease 2019 (COVID-19) pandemic continues to generate significant morbidity and mortality as well as economic and societal impacts, the landscape of potential treatments has slowly begun to broaden. In the case of a novel disease with widespread consequences, society is more likely to place significant value on interventions that reduce the outsized economic burden of COVID-19. Treatments for severe disease will have a different value profile to that of large-scale vaccines because of their application in targeted and potentially small subsets of those with symptomatic disease vs broad deployment as a preventative measure. Where vaccines reduce transmissibility of COVID-19, use of therapeutics will target symptoms, up to and including death for infected individuals. This paper describes discussions from a virtual expert panel that met to attempt a consensus on how existing principles of economic evaluation should be applied to therapeutics that emerge in a pandemic setting, with specific focus on severe hospitalised cases of COVID-19. The panel concluded that the core principles of economic evaluation do not need to be drastically overhauled to meet the challenges of a pandemic, but that there are several additional elements of value such as equity, disease severity, insurance value, and scientific and family spillover effects that should be considered when presenting results to decision makers. The panel also highlighted the persistent challenges on how society should value novel therapies, such as the appropriate cost-effectiveness threshold to apply, which are particularly salient during a pandemic

    How Noisy Adaptation of Neurons Shapes Interspike Interval Histograms and Correlations

    Get PDF
    Channel noise is the dominant intrinsic noise source of neurons causing variability in the timing of action potentials and interspike intervals (ISI). Slow adaptation currents are observed in many cells and strongly shape response properties of neurons. These currents are mediated by finite populations of ionic channels and may thus carry a substantial noise component. Here we study the effect of such adaptation noise on the ISI statistics of an integrate-and-fire model neuron by means of analytical techniques and extensive numerical simulations. We contrast this stochastic adaptation with the commonly studied case of a fast fluctuating current noise and a deterministic adaptation current (corresponding to an infinite population of adaptation channels). We derive analytical approximations for the ISI density and ISI serial correlation coefficient for both cases. For fast fluctuations and deterministic adaptation, the ISI density is well approximated by an inverse Gaussian (IG) and the ISI correlations are negative. In marked contrast, for stochastic adaptation, the density is more peaked and has a heavier tail than an IG density and the serial correlations are positive. A numerical study of the mixed case where both fast fluctuations and adaptation channel noise are present reveals a smooth transition between the analytically tractable limiting cases. Our conclusions are furthermore supported by numerical simulations of a biophysically more realistic Hodgkin-Huxley type model. Our results could be used to infer the dominant source of noise in neurons from their ISI statistics

    Comparative genetic architectures of schizophrenia in East Asian and European populations

    Get PDF
    Schizophrenia is a debilitating psychiatric disorder with approximately 1% lifetime risk globally. Large-scale schizophrenia genetic studies have reported primarily on European ancestry samples, potentially missing important biological insights. Here, we report the largest study to date of East Asian participants (22,778 schizophrenia cases and 35,362 controls), identifying 21 genome-wide-significant associations in 19 genetic loci. Common genetic variants that confer risk for schizophrenia have highly similar effects between East Asian and European ancestries (genetic correlation = 0.98 ± 0.03), indicating that the genetic basis of schizophrenia and its biology are broadly shared across populations. A fixed-effect meta-analysis including individuals from East Asian and European ancestries identified 208 significant associations in 176 genetic loci (53 novel). Trans-ancestry fine-mapping reduced the sets of candidate causal variants in 44 loci. Polygenic risk scores had reduced performance when transferred across ancestries, highlighting the importance of including sufficient samples of major ancestral groups to ensure their generalizability across populations

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore