124 research outputs found
A Soft Budget Constraint Explanation for the Venture Capital Cycle
We explore why venture capital funds limit the amount of capital they raise and do not reinvest the proceeds. This structure is puzzling because it leads to a succession of several funds financing each new venture which multiplies the well known agency problems. We argue that an inside investor cannot provide a hard budget constraint while a less well informed outsider can. Therefore, the venture capitalist delegates the continuation decision to the outsider by ex ante restricting the amount of capital he has under management. The soft budget constraint problem becomes the more important the higher the entrepreneur’s private benefits are and the higher the probability of failure of a project is
The M 31 double nucleus probed with OASIS and HST. A natural m=1 mode?
We present observations with the adaptive optics assisted integral field
spectrograph OASIS of the M 31 double nucleus at a spatial resolution better
than 0.5 arcsec FWHM. These data are used to derive the two-dimensional stellar
kinematics within the central 2 arcsec. Archival WFPC2/HST images are revisited
to perform a photometric decomposition of the nuclear region. We also present
STIS/HST kinematics obtained from the archive. The luminosity distribution of
the central region is well separated into the respective contributions of the
bulge, the nucleus including P1 and P2, and the so-called UV peak. We then show
that the axis joining P1 and P2, the two local surface brightness maxima, does
not coincide with the kinematic major-axis, which is also the major-axis of the
nuclear isophotes (excluding P1). We also confirm that the velocity dispersion
peak is offset by ~ 0.2 arcsec from the UV peak, assumed to mark the location
of the supermassive black hole. The newly reduced STIS/HST velocity and
dispersion profiles are then compared to OASIS and other published kinematics.
We find significant offsets with previously published data. Simple parametric
models are then built to successfully reconcile all the available kinematics.
We finally interpret the observations using new N-body simulations. The nearly
keplerian nuclear disk of M31 is subject to a natural m=1 mode, with a very
slow pattern speed (3 km/s/pc for M_BH = 7 10^7~\Msun), that can be maintained
during more than a thousand dynamical times. The resulting morphology and
kinematics of the mode can reproduce the M~31 nuclear-disk photometry and mean
stellar velocity, including the observed asymmetries. It requires a central
mass concentration and a cold disk system representing between 20 and 40% of
its mass. Abridged..Comment: 21 pages. accepted for publication in A&
Extracting science from surveys of our Galaxy
Our knowledge of the Galaxy is being revolutionised by a series of
photometric, spectroscopic and astrometric surveys. Already an enormous body of
data is available from completed surveys, and data of ever increasing quality
and richness will accrue at least until the end of this decade. To extract
science from these surveys we need a class of models that can give probability
density functions in the space of the observables of a survey -- we should not
attempt to "invert" the data from the space of observables into the physical
space of the Galaxy. Currently just one class of model has the required
capability, so-called "torus models". A pilot application of torus models to
understanding the structure of the Galaxy's thin and thick discs has already
produced two significant results: a major revision of our best estimate of the
Sun's velocity with respect to the Local Standard of Rest, and a successful
prediction of the way in which the vertical velocity dispersion in the disc
varies with distance from the Galactic plane.Comment: 13 pages. Invited review to appear in Pramana - journal of physics
(Indian Academy of Sciences
N-body simulations of gravitational dynamics
We describe the astrophysical and numerical basis of N-body simulations, both
of collisional stellar systems (dense star clusters and galactic centres) and
collisionless stellar dynamics (galaxies and large-scale structure). We explain
and discuss the state-of-the-art algorithms used for these quite different
regimes, attempt to give a fair critique, and point out possible directions of
future improvement and development. We briefly touch upon the history of N-body
simulations and their most important results.Comment: invited review (28 pages), to appear in European Physics Journal Plu
Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model
Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children
Mergers, AGN, and 'Normal' Galaxies: Contributions to the Distribution of Star Formation Rates and Infrared Luminosity Functions
We use a novel method to predict the contribution of normal star-forming
galaxies, merger-induced bursts, and obscured AGN, to IR luminosity functions
(LFs) and global SFR densities. We use empirical halo occupation constraints to
populate halos with galaxies and determine the distribution of normal and
merging galaxies. Each system can then be associated with high-resolution
hydrodynamic simulations. We predict the distribution of observed luminosities
and SFRs, from different galaxy classes, as a function of redshift from z=0-6.
We provide fitting functions for the predicted LFs, quantify the uncertainties,
and compare with observations. At all redshifts, 'normal' galaxies dominate the
LF at moderate luminosities ~L* (the 'knee'). Merger-induced bursts
increasingly dominate at L>>L*; at the most extreme luminosities, AGN are
important. However, all populations increase in luminosity at higher redshifts,
owing to increasing gas fractions. Thus the 'transition' between normal and
merger-dominated sources increases from the LIRG-ULIRG threshold at z~0 to
bright Hyper-LIRG thresholds at z~2. The transition to dominance by obscured
AGN evolves similarly, at factor of several higher L_IR. At all redshifts,
non-merging systems dominate the total luminosity/SFR density, with
merger-induced bursts constituting ~5-10% and AGN ~1-5%. Bursts contribute
little to scatter in the SFR-stellar mass relation. In fact, many systems
identified as 'ongoing' mergers will be forming stars in their 'normal'
(non-burst) mode. Counting this as 'merger-induced' star formation leads to a
stronger apparent redshift evolution in the contribution of mergers to the SFR
density.Comment: 16 pages, 9 figures (+appendices), accepted to MNRAS. A routine to
return the galaxy merger rates discussed here is available at
http://www.cfa.harvard.edu/~phopkins/Site/mergercalc.htm
Phycodnavirus Potassium Ion Channel Proteins Question the Virus Molecular Piracy Hypothesis
Phycodnaviruses are large dsDNA, algal-infecting viruses that encode many genes with homologs in prokaryotes and eukaryotes. Among the viral gene products are the smallest proteins known to form functional K+ channels. To determine if these viral K+ channels are the product of molecular piracy from their hosts, we compared the sequences of the K+ channel pore modules from seven phycodnaviruses to the K+ channels from Chlorella variabilis and Ectocarpus siliculosus, whose genomes have recently been sequenced. C. variabilis is the host for two of the viruses PBCV-1 and NY-2A and E. siliculosus is the host for the virus EsV-1. Systematic phylogenetic analyses consistently indicate that the viral K+ channels are not related to any lineage of the host channel homologs and that they are more closely related to each other than to their host homologs. A consensus sequence of the viral channels resembles a protein of unknown function from a proteobacterium. However, the bacterial protein lacks the consensus motif of all K+ channels and it does not form a functional channel in yeast, suggesting that the viral channels did not come from a proteobacterium. Collectively, our results indicate that the viruses did not acquire their K+ channel-encoding genes from their current algal hosts by gene transfer; thus alternative explanations are required. One possibility is that the viral genes arose from ancient organisms, which served as their hosts before the viruses developed their current host specificity. Alternatively the viral proteins could be the origin of K+ channels in algae and perhaps even all cellular organisms
Paneth cell - rich regions separated by a cluster of Lgr5+ cells initiate crypt fission in the intestinal stem cell niche
The crypts of the intestinal epithelium house the stem cells that ensure the continual renewal of the epithelial cells that line the intestinal tract. Crypt number increases by a process called crypt fission, the division of a single crypt into two daughter crypts. Fission drives normal tissue growth and maintenance. Correspondingly, it becomes less frequent in adulthood. Importantly, fission is reactivated to drive adenoma growth. The mechanisms governing fission are poorly understood. However, only by knowing how normal fission operates can cancer-associated changes be elucidated. We studied normal fission in tissue in three dimensions using high-resolution imaging and used intestinal organoids to identify underlying mechanisms. We discovered that both the number and relative position of Paneth cells and Lgr5+ cells are important for fission. Furthermore, the higher stiffness and increased adhesion of Paneth cells are involved in determining the site of fission. Formation of a cluster of Lgr5+ cells between at least two Paneth-cell-rich domains establishes the site for the upward invagination that initiates fission
The XXL Survey: VI. The 1000 brightest X-ray point sources
X-ray extragalactic surveys are ideal laboratories for the study of the evolution and clustering of active galactic nuclei (AGN). The XXL Survey spans two fields of a combined 50 observed for more than 6Ms with XMM-Newton, occupying the parameter space between deep surveys and very wide area surveys; at the same time it benefits from a wealth of ancillary data. This paper marks the first release of the XXL point source catalogue selected in the 2-10 keV energy band with limiting flux . We use both public and proprietary data sets to identify the counterparts of the X-ray point-like sources and improved upon the photometric redshift determination for AGN by applying a Random Forest classification trained to identify for each object the optimal photometric redshift model library. We also assign a probability to each source to be a star or an outlier. We model with Bayesian analysis the X-ray spectra assuming a power-law model with the presence of an absorbing medium. We find an average unabsorbed photon index of and average hydrogen column density . We find no trend of or with redshift and a fraction of 26% absorbed sources (). We show that the XXL-1000-AGN number counts extended the number counts of the COSMOS survey to higher fluxes and are fully consistent with the Euclidean expectation. We constrain the intrinsic luminosity function of AGN in the 2-10 keV energy band where the unabsorbed X-ray flux is estimated from the X-ray spectral fit up to z=3. Finally, we demonstrate the presence of a supercluster size structure at redshift 0.14, identified by means of percolation analysis of the XXL-1000-AGN sample. The XXL survey, reaching a medium flux limit and covering a wide area is a stepping stone between current deep fields and planned wide area surveys
- …