67 research outputs found

    Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    Full text link
    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω≃0.5Ωe\omega \simeq 0.5\Omega_e, where Ωe\Omega_e is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe0.3\Omega_e and 0.6Ωe0.6\Omega_e. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test-particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles

    Quantum key distribution with higher-order alphabets using spatially-encoded qudits

    Full text link
    We propose and demonstrate a quantum key distribution scheme in higher-order dd-dimensional alphabets using spatial degrees of freedom of photons. Our implementation allows for the transmission of 4.56 bits per sifted photon, while providing improved security: an intercept-resend attack on all photons would induce an error rate of 0.47. Using our system, it should be possible to send more than a byte of information per sifted photon.Comment: 4 pages, 5 figures. Replaced with published versio

    A Kinetic Alfven wave cascade subject to collisionless damping cannot reach electron scales in the solar wind at 1 AU

    Full text link
    (Abridged) Turbulence in the solar wind is believed to generate an energy cascade that is supported primarily by Alfv\'en waves or Alfv\'enic fluctuations at MHD scales and by kinetic Alfv\'en waves (KAWs) at kinetic scales k⊄ρi≳1k_\perp \rho_i\gtrsim 1. Linear Landau damping of KAWs increases with increasing wavenumber and at some point the damping becomes so strong that the energy cascade is completely dissipated. A model of the energy cascade process that includes the effects of linear collisionless damping of KAWs and the associated compounding of this damping throughout the cascade process is used to determine the wavenumber where the energy cascade terminates. It is found that this wavenumber occurs approximately when ∣γ/Ï‰âˆŁâ‰ƒ0.25|\gamma/\omega|\simeq 0.25, where ω(k)\omega(k) and Îł(k)\gamma(k) are, respectively, the real frequency and damping rate of KAWs and the ratio Îł/ω\gamma/\omega is evaluated in the limit as the propagation angle approaches 90 degrees relative to the direction of the mean magnetic field.Comment: Submitted to Ap

    Plasma Depletion and Mirror Waves Ahead of Interplanetary Coronal Mass Ejections

    Full text link
    We find that the sheath regions between fast interplanetary coronal mass ejections (ICMEs) and their preceding shocks are often characterized by plasma depletion and mirror wave structures, analogous to planetary magnetosheaths. A case study of these signatures in the sheath of a magnetic cloud (MC) shows that a plasma depletion layer (PDL) coincides with magnetic field draping around the MC. In the same event, we observe an enhanced thermal anisotropy and plasma beta as well as anti-correlated density and magnetic fluctuations which are signatures of mirror mode waves. We perform a superposed epoch analysis of ACE and Wind plasma and magnetic field data from different classes of ICMEs to illuminate the general properties of these regions. For MCs preceded by shocks, the sheaths have a PDL with an average duration of 6 hours (corresponding to a spatial span of about 0.07 AU) and a proton temperature anisotropy T⊄pT∄p≃1.2{T_{\perp p}\over T_{\parallel p}}\simeq 1.2 -1.3, and are marginally unstable to the mirror instability. For ICMEs with preceding shocks which are not MCs, plasma depletion and mirror waves are also present but at a reduced level. ICMEs without shocks are not associated with these features. The differences between the three ICME categories imply that these features depend on the ICME geometry and the extent of upstream solar wind compression by the ICMEs. We discuss the implications of these features for a variety of crucial physical processes including magnetic reconnection, formation of magnetic holes and energetic particle modulation in the solar wind.Comment: fully refereed, accepted for publication in J. Geophys. Re

    Roles of Fast-Cyclotron and Alfven-Cyclotron Waves for the Multi-Ion Solar Wind

    Full text link
    Using linear Vlasov theory of plasma waves and quasi-linear theory of resonant wave-particle interaction, the dispersion relations and the electromagnetic field fluctuations of fast and Alfven waves are studied for a low-beta multi-ion plasma in the inner corona. Their probable roles in heating and accelerating the solar wind via Landau and cyclotron resonances are quantified. We assume that (1) low-frequency Alfven and fast waves have the same spectral shape and the same amplitude of power spectral density; (2) these waves eventually reach ion cyclotron frequencies due to a turbulence cascade; (3) kinetic wave-particle interaction powers the solar wind. The existence of alpha particles in a dominant proton/electron plasma can trigger linear mode conversion between oblique fast-whistler and hybrid alpha-proton cyclotron waves. The fast-cyclotron waves undergo both alpha and proton cyclotron resonances. The alpha cyclotron resonance in fast-cyclotron waves is much stronger than that in Alfven-cyclotron waves. For alpha cyclotron resonance, an oblique fast-cyclotron wave has a larger left-handed electric field fluctuation, a smaller wave number, a larger local wave amplitude, and a greater energization capability than a corresponding Alfven-cyclotron wave at the same wave propagation angle \theta, particularly at 80∘80^\circ < \theta < 90∘90^\circ. When Alfven-cyclotron or fast-cyclotron waves are present, alpha particles are the chief energy recipient. The transition of preferential energization from alpha particles to protons may be self-modulated by differential speed and temperature anisotropy of alpha particles via the self-consistently evolving wave-particle interaction. Therefore, fast-cyclotron waves as a result of linear mode coupling is a potentially important mechanism for preferential energization of minor ions in the main acceleration region of the solar wind.Comment: 29 pages, 10 figures, 3 tables. Accepted for publication in Solar Physic

    A Model of Turbulence in Magnetized Plasmas: Implications for the Dissipation Range in the Solar Wind

    Full text link
    This paper studies the turbulent cascade of magnetic energy in weakly collisional magnetized plasmas. A cascade model is presented, based on the assumptions of local nonlinear energy transfer in wavenumber space, critical balance between linear propagation and nonlinear interaction times, and the applicability of linear dissipation rates for the nonlinearly turbulent plasma. The model follows the nonlinear cascade of energy from the driving scale in the MHD regime, through the transition at the ion Larmor radius into the kinetic Alfven wave regime, in which the turbulence is dissipated by kinetic processes. The turbulent fluctuations remain at frequencies below the ion cyclotron frequency due to the strong anisotropy of the turbulent fluctuations, k_parallel << k_perp (implied by critical balance). In this limit, the turbulence is optimally described by gyrokinetics; it is shown that the gyrokinetic approximation is well satisfied for typical slow solar wind parameters. Wave phase velocity measurements are consistent with a kinetic Alfven wave cascade and not the onset of ion cyclotron damping. The conditions under which the gyrokinetic cascade reaches the ion cyclotron frequency are established. Cascade model solutions imply that collisionless damping provides a natural explanation for the observed range of spectral indices in the dissipation range of the solar wind. The dissipation range spectrum is predicted to be an exponential fall off; the power-law behavior apparent in observations may be an artifact of limited instrumental sensitivity. The cascade model is motivated by a programme of gyrokinetic simulations of turbulence and particle heating in the solar wind.Comment: 29 pages, 14 figure

    Kinetic Turbulence

    Full text link
    The weak collisionality typical of turbulence in many diffuse astrophysical plasmas invalidates an MHD description of the turbulent dynamics, motivating the development of a more comprehensive theory of kinetic turbulence. In particular, a kinetic approach is essential for the investigation of the physical mechanisms responsible for the dissipation of astrophysical turbulence and the resulting heating of the plasma. This chapter reviews the limitations of MHD turbulence theory and explains how kinetic considerations may be incorporated to obtain a kinetic theory for astrophysical plasma turbulence. Key questions about the nature of kinetic turbulence that drive current research efforts are identified. A comprehensive model of the kinetic turbulent cascade is presented, with a detailed discussion of each component of the model and a review of supporting and conflicting theoretical, numerical, and observational evidence.Comment: 31 pages, 3 figures, 99 references, Chapter 6 in A. Lazarian et al. (eds.), Magnetic Fields in Diffuse Media, Astrophysics and Space Science Library 407, Springer-Verlag Berlin Heidelberg (2015

    Observations of Radiation Belt Losses Due to Cyclotron Wave-Particle Interactions

    Get PDF
    Electron loss to the atmosphere plays a critical role in driving dynamics of the Earths Van Allen radiation belts and slot region. This is a review of atmospheric loss of radiation belt electrons caused by plasma wave scattering via Doppler-shifted cyclotron resonance. In particular, the focus is on observational signatures of electron loss, which include direct measurements of precipitating electrons, measured properties of waves that drive precipitation, and variations in the trapped population resulting from loss. We discuss wave and precipitation measurements from recent missions, including simultaneous multi-payload observations, which have provided new insight into the dynamic nature of the radiation belts
    • 

    corecore