143 research outputs found
Pioglitazone Attenuates Vascular Fibrosis in Spontaneously Hypertensive Rats
Objective. We sought to investigate whether the peroxisome proliferator-activated receptor-γ (PPAR-γ) ligand pioglitazone can attenuate vascular fibrosis in spontaneously hypertensive rats (SHRs) and explore the possible molecular mechanisms. Methods. SHRs (8-week-old males) were randomly divided into 3 groups (n = 8 each) for treatment: pioglitazone (10 mg/kg/day), hydralazine (25 mg/kg/day), or saline. Normal male Wistar Kyoto (WKY) rats (n = 8) served as normal controls. Twelve weeks later, we evaluated the effect of pioglitazone on vascular fibrosis by Masson's trichrome and immunohistochemical staining of collagen III and real-time RT-PCR analysis of collagen I, III and fibronectin mRNA.Vascular expression of PPAR-γ and connective tissue growth factor (CTGF) and transforming growth factor-β (TGF-β) expression were evaluated by immunohistochemical staining, western blot analysis, and real-time RT-PCR. Results. Pioglitazone and hydralazine treatment significantly decreased systolic blood pressure in SHRs. Masson's trichrome staining for collagen III and real-time RT-PCR analysis of collagen I, III and fibronectin mRNA indicated that pioglitazone significantly inhibited extracellular matrix production in the aorta. Compared with Wistar Kyoto rats, SHRs showed significantly increased vascular CTGF expression. Pioglitazone treatment significantly increased PPAR-γ expression and inhibited CTGF expression but had no effect on TGF-β expression. Conclusions. The results indicate that pioglitazone attenuated vascular fibrosis in SHRs by inhibiting CTGF expression in a TGF-β-independent mechanism
Targeted next-generation sequencing of dedifferentiated chondrosarcoma in the skull base reveals combined TP53 and PTEN mutations with increased proliferation index, an implication for pathogenesis
Dedifferentiated chondrosarcoma (DDCS) is a rare disease with a dismal prognosis. DDCS consists of two morphologically distinct components: the cartilaginous and noncartilaginous components. Whether the two components originate from the same progenitor cells has been controversial. Recurrent DDCS commonly displays increased proliferation compared with the primary tumor. However, there is no conclusive explanation for this mechanism. In this paper, we present two DDCSs in the sellar region. Patient 1 exclusively exhibited a noncartilaginous component with a TP53 frameshift mutation in the pathological specimens from the first surgery. The tumor recurred after radiation therapy with an exceedingly increased proliferation index. Targeted next-generation sequencing (NGS) revealed the presence of both a TP53 mutation and a PTEN deletion in the cartilaginous and the noncartilaginous components of the recurrent tumor. Fluorescence in situ hybridization and immunostaining confirmed reduced DNA copy number and protein levels of the PTEN gene as a result of the PTEN deletion. Patient 2 exhibited both cartilaginous and noncartilaginous components in the surgical specimens. Targeted NGS of cells from both components showed neither TP53 nor PTEN mutations, making Patient 2 a naïve TP53 and PTEN control for comparison. In conclusion, additional PTEN loss in the background of the TP53 mutation could be the cause of increased proliferation capacity in the recurrent tumor
CDSD: Chinese Dysarthria Speech Database
We present the Chinese Dysarthria Speech Database (CDSD) as a valuable
resource for dysarthria research. This database comprises speech data from 24
participants with dysarthria. Among these participants, one recorded an
additional 10 hours of speech data, while each recorded one hour, resulting in
34 hours of speech material. To accommodate participants with varying cognitive
levels, our text pool primarily consists of content from the AISHELL-1 dataset
and speeches by primary and secondary school students. When participants read
these texts, they must use a mobile device or the ZOOM F8n multi-track field
recorder to record their speeches. In this paper, we elucidate the data
collection and annotation processes and present an approach for establishing a
baseline for dysarthric speech recognition. Furthermore, we conducted a
speaker-dependent dysarthric speech recognition experiment using an additional
10 hours of speech data from one of our participants. Our research findings
indicate that, through extensive data-driven model training, fine-tuning
limited quantities of specific individual data yields commendable results in
speaker-dependent dysarthric speech recognition. However, we observe
significant variations in recognition results among different dysarthric
speakers. These insights provide valuable reference points for
speaker-dependent dysarthric speech recognition.Comment: 9 pages, 3 figure
Clinical study: the impact of goal-directed fluid therapy on volume management during enhanced recovery after surgery in gastrointestinal procedures
Background: Goal-directed fluid therapy, as a crucial component of accelerated rehabilitation after surgery, plays a significant role in expediting postoperative recovery and enhancing the prognosis of major surgical procedures.Methods: In line with this, the present study aimed to investigate the impact of target-oriented fluid therapy on volume management during ERAS protocols specifically for gastrointestinal surgery. Patients undergoing gastrointestinal surgery at our hospital between October 2019 and May 2021 were selected as the sample population for this research.Results: 41 cases of gastrointestinal surgery patients were collected from our hospital over 3 recent years. Compared with T1, MAP levels were significantly increased from T2 to T5; cardiac output (CO) was significantly decreased from T2 to T3, and significantly increased from T4 to T5; and SV level was significantly increased from T3 to T5. Compared with T2, HR and cardiac index (CI) were significantly elevated at T1 and at T3–T5. Compared with T3, SVV was significantly decreased at T1, T2, T4, and T5; CO and stroke volume (SV) levels were increased significantly at T4 and T5. In this study, pressor drugs were taken for 23 days, PACU residence time was 40.22 ± 12.79 min, time to get out of bed was 12.41 ± 3.97 h, exhaust and defecation time was 18.11 ± 7.52 h, and length of postoperative hospital stay was 4.47 ± 1.98 days. The average HAMA score was 9.11 ± 2.37, CRP levels were 10.54 ± 3.38 mg/L, adrenaline levels were 132.87 ± 8.97 ng/L, and cortisol levels were 119.72 ± 4.08 ng/L. Prealbumin levels were 141.98 ± 10.99 mg/L at 3 d after surgery, and 164.17 ± 15.84 mg/L on the day of discharge. Lymphocyte count was 1.22 ± 0.18 (109/L) at 3 d after surgery, and 1.47 ± 0.17 (109/L) on the day of discharge. Serum albumin levels were 30.51 ± 2.28 (g/L) at 3 d after surgery, and 33.52 ± 2.07 (g/L) on the day of discharge.Conclusion: Goal-directed fluid therapy (GDFT) under the concept of Enhanced Recovery After Surgery (ERAS) is helpful in volume management during radical resection of colorectal tumors, with good postoperative recovery. Attention should be paid to the influence of pneumoperitoneum and intraoperative posture on GDFT parameters
Development of Composite Microencapsulated Phase Change Materials for Multi-Temperature Thermal Energy Storage
Phase change energy storage materials have been recognized as potential energy-saving materials for balancing cooling and heating demands in buildings. However, individual phase change materials (PCM) with single phase change temperature cannot be adapted to different temperature requirements. To this end, the concept of fabricating different kinds of microencapsulated PCM (MEPCM) and combing them to form a multiphase change material (MPCM) for multi-seasonal applications in buildings has been proposed. To prove the feasibility of this idea, three kinds of MEPCMs were fabricated and used for the development of three different composite MPCMs, classified as MPCM-1, MPCM-2, and MPCM-3. Analysis of the results shows that each MPCM sample was able to release latent heat at two different temperatures thus making them suitable for multi-temperature thermal energy storage applications. The phase change temperatures of the MPCMs were however found to be slightly reduced by 0.09–0.31 ◦C as compared with the MEPCMs samples. The measured energy storage capacities for the MPCMs were also reduced in the range of 6.3–11.4% as compared with the theoretical values but they displayed relatively good thermal stability behaviour of up to 197.8–218.8 ◦C. It was further identified that the phase change temperatures and latent heat of the MPCM was attributed to the weight percentages of individual components, as the theoretical values for the three MPCM samples were all in good accordance with the measured values. Therefore, optimizing the weight ratios of the MEPCM in MPCM samples and their corresponding thermophysical properties based on specific climatic conditions would be a necessary step to take in future investigations. Thermal performance enhancement of the MPCM is also being recommended as an essential part of further research
QTL analysis for yield-related traits under different water regimes in maize
Drought is one of the most essential factors influencing maize yield. Improving maize varieties with drought tolerance by using marker-assisted or genomic selection requires more understanding of the genetic basis of yield-related traits under different water regimes. In the present study, 213 F2:3 families of the cross of H082183 (drought-tolerant) × Lv28 (drought susceptible) were phenotyped with five yield-related traits under four well-watered and six drought environments for two years. Quantitative trait loci analysis identified 133 significant QTLs (94 QTLs for ear traits and 39 QTLs for kernel traits) based on single environment analysis. The joint-environment analysis detected 25 QTLs under well-watered environments (eight QTLs for ear length, eight for ear diameter, one for ear weight, two for kernel weight per ear, and six for 100-kernel weight), and nine QTLs under water-stressed environments (two QTLs for ear length, three for ear diameter, one for ear weight, one for kernel weight, and two for 100-kernel weight). Among these joint-environment QTLs, one common QTL (qEL5) was stably identified at both of the water regimes. Meanwhile, two main-effect QTLs were detected in the well-watered environments, i.e. qEL10 for ear length and qHKW2 for 100-kernel weight. Also, qED8, qEW8, and qKW8 were found to be located in the same interval of Chr. 8. Similarly, qEL4s and qKW4s were found to be located in the same interval under water-stressed environments. These genomic regions could be candidate targets for further fine mapping and marker-assisted breeding in maize
Bioinspired Ultrathin Piecewise Controllable Soft Robots
In nature, animals or plants often use soft organs to move and hunt. Research works on bioinspired materials and devices have attracted more and more interest as which show the potential for future intelligent robots. As key components of soft robots, biomimetic soft actuators are adapted to greater requirements for convenient, accurate, and programmable controlling robots. Here, a class of materials and processing routes of ultrathin actuators are reported for bioinspired piecewise controllable soft robots, where the actuators associate with thermal-responsible soft silicone thin film with thickness as thin as 45 µm and electrically driven by well mechanical designed metallic thin film electrodes. Multiple electrodes in the robots in charge of individual segments control allow the soft robots exhibiting similar functionalities of animals or plants (for example, imitating the tongue of a reptile, such as chameleon to hunt moving preys, and mimicking vines to tightly wind around objects). These bionic results in the soft robots demonstrate their advantages in precise and flexible operation, which provides a good reference for the future research of intelligent soft actuators and robots.acceptedVersionPeer reviewe
The bone marrow of mouse-rat chimeras contains progenitors of multiple pulmonary cell lineages
Radiation-induced lung injury (RILI) is a common complication of anti-cancer treatments for thoracic and hematologic malignancies. Bone marrow (BM) transplantation restores hematopoietic cell lineages in cancer patients. However, it is ineffective in improving lung repair after RILI due to the paucity of respiratory progenitors in BM transplants. In the present study, we used blastocyst injection to create mouse-rat chimeras, these are artificial animals in which BM is enriched with mouse-derived progenitor cells. FACS-sorted mouse BM cells from mouse-rat chimeras were transplanted into lethally irradiated syngeneic mice, and the contribution of donor cells to the lung tissue was examined using immunostaining and flow cytometry. Donor BM cells provided long-term contributions to all lung-resident hematopoietic cells which includes alveolar macrophages and dendritic cells. Surprisingly, donor BM cells also contributed up to 8% in pulmonary endothelial cells and stromal cells after RILI. To identify respiratory progenitors in donor BM, we performed single-cell RNA sequencing (scRNAseq). Compared to normal mouse BM, increased numbers of hematopoietic progenitors were found in the BM of mouse-rat chimeras. We also identified unique populations of hemangioblast-like progenitor cells expressing Hes1, Dntt and Ebf1, along with mesenchymal stromal cells expressing Cpox, Blvrb and Ermap that were absent or ultra-rare in the normal mouse BM. In summary, by using rats as “bioreactors”, we created a unique mouse BM cell transplant that contributes to multiple respiratory cell types after RILI. Interspecies chimeras have promise for future generations of BM transplants enriched in respiratory progenitor cells
Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector
A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
- …