46 research outputs found

    Efficient ML Models for Practical Secure Inference

    Full text link
    ML-as-a-service continues to grow, and so does the need for very strong privacy guarantees. Secure inference has emerged as a potential solution, wherein cryptographic primitives allow inference without revealing users' inputs to a model provider or model's weights to a user. For instance, the model provider could be a diagnostics company that has trained a state-of-the-art DenseNet-121 model for interpreting a chest X-ray and the user could be a patient at a hospital. While secure inference is in principle feasible for this setting, there are no existing techniques that make it practical at scale. The CrypTFlow2 framework provides a potential solution with its ability to automatically and correctly translate clear-text inference to secure inference for arbitrary models. However, the resultant secure inference from CrypTFlow2 is impractically expensive: Almost 3TB of communication is required to interpret a single X-ray on DenseNet-121. In this paper, we address this outstanding challenge of inefficiency of secure inference with three contributions. First, we show that the primary bottlenecks in secure inference are large linear layers which can be optimized with the choice of network backbone and the use of operators developed for efficient clear-text inference. This finding and emphasis deviates from many recent works which focus on optimizing non-linear activation layers when performing secure inference of smaller networks. Second, based on analysis of a bottle-necked convolution layer, we design a X-operator which is a more efficient drop-in replacement. Third, we show that the fast Winograd convolution algorithm further improves efficiency of secure inference. In combination, these three optimizations prove to be highly effective for the problem of X-ray interpretation trained on the CheXpert dataset.Comment: 10 pages include references, 4 figure

    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015 : a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61.7 years (95% uncertainty interval 61.4-61.9) in 1980 to 71.8 years (71.5-72.2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11.3 years (3.7-17.4), to 62.6 years (56.5-70.2). Total deaths increased by 4.1% (2.6-5.6) from 2005 to 2015, rising to 55.8 million (54.9 million to 56.6 million) in 2015, but age-standardised death rates fell by 17.0% (15.8-18.1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14.1% (12.6-16.0) to 39.8 million (39.2 million to 40.5 million) in 2015, whereas age-standardised rates decreased by 13.1% (11.9-14.3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42.1%, 39.1-44.6), malaria (43.1%, 34.7-51.8), neonatal preterm birth complications (29.8%, 24.8-34.9), and maternal disorders (29.1%, 19.3-37.1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Copyright (C) The Author(s). Published by Elsevier Ltd.Peer reviewe

    Design factor identification to develop a sustainable smart product: case study on digital twin model for smart factory

    No full text
    This study explores the use of digital twin technology, a virtual mirror of a physical object, in the context of smart factories and has developed a smart camera based on the principles of sustainability for Yangbum Engineering Pte Ltd., a Singapore-based engineering firm, to get valuable insights for optimising manufacturing processes and improving overall equipment performance. The camera captures images of the production line and analyses them to figure out product lead time, machine breakdowns, operator performance, preventive maintenance and OEE, ensuring sustainable use and efficiency of machines running in production by identifying abnormalities in production, helping prevent downtime and reducing waste. The testing was done only on a mock-up model due to camera quality limitations, limited access to the production shop floor and time and budget constraints. This system has the potential to be used in a variety of settings and can be customized to meet specific requirements. One potential limitation of the system is the alteration to the surroundings which may require additional calibration and configuration for identifying the location of the LEDs within the system. This study contributes to the advancement of sustainable design practices in smart factories and has significant positive impacts on the environment, economy, and society. Keywords: Digital Twin (DT), RAMI 4.0, Industry 4.0, Smart factory, SustainabilityBachelor of Engineering (Mechanical Engineering

    Signatures of Ge2Sb2Te5 film at structural transitions

    No full text
    Ge2Sb2Te5 (GST) films, one of the most suitable Chalcogenide alloys for Phase change Random Access Memory applications are studied for changes in sheet resistance, optical transmission, morphology and surface science by annealing at various transition temperatures. The crystallization leads to an increase of grain size and roughness in the films and the resistance changes to three orders of magnitude. Optical studies on GST films show distinct changes during phase transitions and the optical parameters are calculated. An increase of Tauc parameters B-1/2 indicates a reduction in disorder during phase transition. It is confirmed from XPS studies that Ge-Te, Sb-Te bonds are present in both amorphous and crystalline phases whereas Sb-Ge, Te-Te, Sb-Sb bonds are absent. (C) 2012 Elsevier B.V. All rights reserved

    Effect of selenium addition on the GeTe phase change memory alloys

    No full text
    Compositional dependent investigations of the bulk GeTe chalcogenides alloys added with different selenium concentrations are carried out by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), electron probe micro-analyzer (EPMA) and differential scanning calorimetry (DSC). The measurements reveal that GeTe crystals are predominant in alloys up to 0.20 at.% of Se content indicating interstitial occupancy of Se in the Ge vacancies. Raman modes in the GeTe alloys changes to GeSe modes with the addition of Se. Amorphousness in the alloy increases with increase of Se and 0.50 at.% Se alloy forms a homogeneous amorphous phase with a mixture of Ge-Se and Te-Se bonds. Structural changes are explained with the help of bond theory of solids. Crystallization temperature is found to be increasing with increase of Se, which will enable the amorphous stability. For the optimum 0.50 at.% Se alloy, the melting temperature has reduced which will reduce the RESET current requirement for the phase change memory applications. (C) 2012 Elsevier B.V. All rights reserved

    Direct hexagonal transition of amorphous (Ge2Sb2Te5)(0.9)Se-0.1 thin films

    No full text
    Ge2Sb2Te5 (GST) is well known for its phase change properties and applications in memory and data storage. Efforts are being made to improve its thermal stability and transition between amorphous and crystalline phases. Various elements are doped to GST to improve these properties. In this work, Se has been doped to GST to study its effect on phase change properties. Amorphous GST film crystallized in to rock salt (NaCl) type structure at 150 degrees C and then transformed to hexagonal structure at 250 degrees C. Interestingly, Se doped GST ((GST)(0.9)Se-0.1) film crystallized directly into hexagonal phase and the intermediate phase of NaCl is not observed. The crystallization temperature (T-c) of (GST)(0.9)Se-0.1 is around 200 degrees C, which is 50 degrees C higher than the T-c of GST. For (GST)(0.9)Se-0.1, the threshold switching occurs at about 4.5V which is higher than GST (3 V). Band gap (E-opt) values of as deposited films are calculated from Tauc plot which are 0.63 eV for GST and 0.66 eV for (GST)(0.9)Se-0.1. The E-opt decreases for the films annealed at higher temperatures. The increased T-c, E-opt, the contrast in resistance and the direct transition to hexagonal phase may improve the data readability and thermal stability in the Se doped GST film. (C) 2014 AIP Publishing LLC

    The effect of sulfur on the phase formation of Cu2ZnSnS4 solar cell material

    No full text
    Non-stoichiometry compositions of Cu2Zn1.5Sn1.2S4+x (CZTS) bulk alloys were prepared by the thermal molten technique and characterized by X-ray diffraction (XRD), Raman spectroscopy, Transmission electron microscopy (TEM), Electron probe micro analysis (EPMA) and UV-vis absorbance spectroscopy. The results indicate that the secondary phases such as Cu2S, ZnS and SnS etc., are present as identified by XRD and Raman spectroscopy in the lower sulfur content alloys. However, the pure CZTS kesterite phase was obtained in sulfur excess (ie, x=0.4) composition. The backscattered electron images confirm that the transition from a multiphase formation in the alloy to a single phase formation. A direct band gap of about 1.22 eV has been estimated from UV-vis absorbance spectra studies, and this is close to the optimum value of best solar cell efficiency. (C) 2016 Published by Elsevier B.V

    Light Induced Optical Properties Change in Sb20S40Se40 Thin Films

    No full text
    Thin films of Sb20S40Se40 of thickness 800 nm were prepared by thermal evaporation method. The as-prepared and illuminated thin films were studied by X-ray diffraction, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy and Raman spectroscopy. The optical band gap was reduced due to photo induced effects along with the increase in disorder. These optical properties changes are due to the change of homopolar bond densities. The core level peak shifting in XPS and Raman spectra supports the optical changes happening in the film due to light exposure
    corecore