61 research outputs found

    Generalized double affine Hecke algebras of higher rank

    Full text link
    We define generalized double affine Hecke algebras (GDAHA) of higher rank, attached to a non-Dynkin star-like graph D. This generalizes GDAHA of rank 1 defined in math.QA/0406480 and math.QA/0409261. If the graph is extended D4, then GDAHA is the algebra defined by Sahi in q-alg/9710032, which is a generalization of the Cherednik algebra of type BCn. We prove the formal PBW theorem for GDAHA, and parametrize its irreducible representations in the case when D is affine (i.e. extended D4, E6, E7, E8) and q=1. We formulate a series of conjectures regarding algebraic properties of GDAHA. We expect that, similarly to how GDAHA of rank 1 provide quantizations of del Pezzo surfaces (as shown in math.QA/0406480), GDAHA of higher rank provide quantizations of deformations of Hilbert schemes of these surfaces. The proofs are based on the study of the rational version of GDAHA (which is closely related to the algebras studied in math.QA/0401038), and differential equations of Knizhnik-Zamolodchikov type.Comment: 25 pages, latex; minor corrections are made, some proofs were expande

    Structural Insights of Non-canonical U*U Pair and Hoogsteen Interaction Probed with Se Atom

    Get PDF
    Unlike DNA, in addition to the 20 -OH group, uracil nucleobase and its modifications play essential roles in structure and function diversities of non- coding RNAs. Non-canonical U.U base pair is ubiquitous in non-coding RNAs, which are highly diversified. However, it is not completely clear how uracil plays the diversifing roles. To investigate and compare the uracil in U-A and U.U base pairs, we have decided to probe them with a selenium atom by synthesizing the novel 4-Se-uridine (SeU) phosphoramidite and Se-nucleobase-modified RNAs (SeU-RNAs), where the exo-4-oxygen of uracil is replaced by selenium. Our crystal structure studies of U-A and U.U pairs reveal that the native and Se-derivatized structures are virtually identical, and both U-A and U.U pairs can accommodate large Se atoms. Our thermostability and crystal structure studies indicate that the weakened H-bonding in U-A pair may be compensated by the base stacking, and that the stacking of the trans- Hoogsteen U.U pairs may stabilize RNA duplex and its junction. Our result confirms that the hydrogen bond (O4.. .H-C5) of the Hoogsteen pair is weak. Using the Se atom probe, our Se- functionalization studies reveal more insights into the U.U interaction and U-participation in structure and function diversification of nucleic acids

    The Intrinsic Resolution Limit in the Atomic Force Microscope: Implications for Heights of Nano-Scale Features

    Get PDF
    Background; Accurate mechanical characterization by the atomic force microscope at the highest spatial resolution requires that topography is deconvoluted from indentation. The measured height of nanoscale features in the atomic force microscope (AFM) is almost always smaller than the true value, which is often explained away as sample deformation, the formation of salt deposits and/or dehydration. We show that the real height of nano-objects cannot be obtained directly: a result arising as a consequence of the local probe-sample geometry. Methods and Findings; We have modeled the tip-surface-sample interaction as the sum of the interaction between the tip and the surface and the tip and the sample. We find that the dynamics of the AFM cannot differentiate between differences in force resulting from 1) the chemical and/or mechanical characteristics of the surface or 2) a step in topography due to the size of the sample; once the size of a feature becomes smaller than the effective area of interaction between the AFM tip and sample, the measured height is compromised. This general result is a major contributor to loss of height and can amount to up to ∼90% for nanoscale features. In particular, these very large values in height loss may occur even when there is no sample deformation, and, more generally, height loss does not correlate with sample deformation. DNA and IgG antibodies have been used as model samples where experimental height measurements are shown to closely match the predicted phenomena. Conclusions; Being able to measure the true height of single nanoscale features is paramount in many nanotechnology applications since phenomena and properties in the nanoscale critically depend on dimensions. Our approach allows accurate predictions for the true height of nanoscale objects and will lead to reliable mechanical characterization at the highest spatial resolution

    Synapse Clusters Are Preferentially Formed by Synapses with Large Recycling Pool Sizes

    Get PDF
    Synapses are distributed heterogeneously in neural networks. The relationship between the spatial arrangement of synapses and an individual synapse's structural and functional features remains to be elucidated. Here, we examined the influence of the number of adjacent synapses on individual synaptic recycling pool sizes. When measuring the discharge of the styryl dye FM1–43 from electrically stimulated synapses in rat hippocampal tissue cultures, a strong positive correlation between the number of neighbouring synapses and recycling vesicle pool sizes was observed. Accordingly, vesicle-rich synapses were found to preferentially reside next to neighbours with large recycling pool sizes. Although these synapses with large recycling pool sizes were rare, they were densely arranged and thus exhibited a high amount of release per volume. To consolidate these findings, functional terminals were marked by live-cell antibody staining with anti-synaptotagmin-1-cypHer or overexpression of synaptopHluorin. Analysis of synapse distributions in these systems confirmed the results obtained with FM 1–43. Our findings support the idea that clustering of synapses with large recycling pool sizes is a distinct developmental feature of newly formed neural networks and may contribute to functional plasticity

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF
    corecore