667 research outputs found
Enhanced performance of cobalt ferrite encapsulated in graphitic shell by means of AC magnetically activated catalytic wet peroxide oxidation of 4-nitrophenol
Here we report preliminary catalytic wet peroxide oxidation (CWPO) experiments performed in the presence of an alternating current (AC) magnetic field. One ferromagnetic graphitic nanocomposite - composed by a cobalt ferrite core and a graphitic shell (CoFe2O4/MGNC), was employed in the process, here named magnetically activated catalytic wet peroxide oxidation (MA-CWPO). An aqueous solution containing 5.0 g L-1 of 4-nitrophenol (4-NP) to simulate a high strength polluted stream was used as model system. The experiments were performed at room temperature and atmospheric pressure, with stoichiometric amount of hydrogen peroxide (H2O2), pH = 3 and CoFe2O4/MGNC catalyst load = 5.0 g L-1 (corresponding to a 4-NP/CoFe2O4 mass ratio of 6.9, as CoFe2O4 accounts for 14.4 wt% of CoFe2O4/MGNC). It was shown that the performance of CWPO is enhanced upon application of an AC magnetic field (frequency of 533.9 kHz and magnitude of 240 G). As a result, high 4-NP mineralization was obtained by MA-CWPO (as reflected by a total organic carbon abatement of 79% after 4 h of reaction, instead of 39% in the absence of a magnetic field). This positive effect was ascribed to the localised increase of CoFe2O4/MGNC surface temperature resulting from heat release upon exposure of the nanoparticulated catalyst to an AC magnetic field, which accelerates the catalytic decomposition of H2O2 via hydroxyl radicals (HO center dot) formation
Relational trauma and its impact on late-adopted children
This paper describes work with two children, placed for late adoption who have suffered relational trauma. The paper explores the long-term consequences of such trauma, which includes problems with affect regulation, difficulties in generalising from one experience to another and shifts between phantasies of omnipotent control and sudden helplessness. Using drawings from one boy's therapy, it is argued that many children adopted at a later age live in two worlds, both internal and external, and internal objects and memories from the past vie with new experiences and representations for ascendancy within the child's mind. Which is more real: the world of the past or the present? The paper describes how these children experienced sudden and troubling shifts in focus as they were catapulted from feeling states belonging to one world to the other. The paper ends with a consideration of how findings from neuroscience may help us to understand these sudden shifts and overall argues for a pulling together of psychoanalytic thinking and child development research findings to support the child in psychotherapy
An overview of jets and outflows in stellar mass black holes
In this book chapter, we will briefly review the current empirical
understanding of the relation between accretion state and and outflows in
accreting stellar mass black holes. The focus will be on the empirical
connections between X-ray states and relativistic (`radio') jets, although we
are now also able to draw accretion disc winds into the picture in a systematic
way. We will furthermore consider the latest attempts to measure/order jet
power, and to compare it to other (potentially) measurable quantities, most
importantly black hole spin.Comment: Accepted for publication in Space Science Reviews. Also to appear in
the Space Sciences Series of ISSI - The Physics of Accretion on to Black
Holes (Springer Publisher
The effect of near-surface plastic deformation on the hot corrosion and high temperature corrosion-fatigue response of a nickel-based superalloy
Surface treatments such as shot peening to inhibit fatigue crack initiation are essential processes when designing gas turbine components for aerospace applications. It is therefore crucial to understand the effects of shot peening in representative service environments. Here, the influence of surface treatment on the high temperature corrosion fatigue response of a polycrystalline nickel-based superalloy is considered, an area that has not previously been explored. Two shot peening conditions; 110H 7A 200% and 330H 7A 200%, along with a polished surface were chosen. Specimens were salted and exposed to SO2 gas during fatigue testing at 700 °C. A range of novel techniques including SEM, EBSD and axial chromatism profilometry were used to analyse the near surface cold work and surface condition before and after testing. EBSD local misorientation maps, paired with an increase in corrosion-fatigue life, suggest that a greater depth of cold work produced by the smaller shot size (110H), is providing a significant benefit in terms of hot corrosion and corrosion-fatigue performance. This paper concludes that the presence of a substantial layer of cold work is required to account for any metal loss due to the effects of hot corrosion. It is also evident that cold work hinders fatigue crack initiation and delays the onset of pit to crack transition
Transitions between Inherent Structures in Water
The energy landscape approach has been useful to help understand the dynamic
properties of supercooled liquids and the connection between these properties
and thermodynamics. The analysis in numerical models of the inherent structure
(IS) trajectories -- the set of local minima visited by the liquid -- offers
the possibility of filtering out the vibrational component of the motion of the
system on the potential energy surface and thereby resolving the slow
structural component more efficiently. Here we report an analysis of an IS
trajectory for a widely-studied water model, focusing on the changes in
hydrogen bond connectivity that give rise to many IS separated by relatively
small energy barriers. We find that while the system \emph{travels} through
these IS, the structure of the bond network continuously modifies, exchanging
linear bonds for bifurcated bonds and usually reversing the exchange to return
to nearly the same initial configuration. For the 216 molecule system we
investigate, the time scale of these transitions is as small as the simulation
time scale ( fs). Hence for water, the transitions between each of
these IS is relatively small and eventual relaxation of the system occurs only
by many of these transitions. We find that during IS changes, the molecules
with the greatest displacements move in small ``clusters'' of 1-10 molecules
with displacements of nm, not unlike simpler liquids.
However, for water these clusters appear to be somewhat more branched than the
linear ``string-like'' clusters formed in a supercooled Lennar d-Jones system
found by Glotzer and her collaborators.Comment: accepted in PR
Accretion and ejection in black-hole X-ray transients
Aims: We summarize the current observational picture of the outbursts of
black-hole X-ray transients (BHTs), based on the evolution traced in a
hardness-luminosity diagram (HLD), and we offer a physical interpretation.
Methods: The basic ingredient in our interpretation is the Poynting-Robertson
Cosmic Battery (PRCB, Contopoulos & Kazanas 1998), which provides locally the
poloidal magnetic field needed for the ejection of the jet. In addition, we
make two assumptions, easily justifiable. The first is that the mass-accretion
rate to the black hole in a BHT outburst has a generic bell-shaped form. This
is guaranteed by the observational fact that all BHTs start their outburst and
end it at the quiescent state. The second assumption is that at low accretion
rates the accretion flow is geometrically thick, ADAF-like, while at high
accretion rates it is geometrically thin.
Results: Both, at the beginning and the end of an outburst, the PRCB
establishes a strong poloidal magnetic field in the ADAF-like part of the
accretion flow, and this explains naturally why a jet is always present in the
right part of the HLD. In the left part of the HLD, the accretion flow is in
the form of a thin disk, and such a disk cannot sustain a strong poloidal
magnetic filed. Thus, no jet is expected in this part of the HLD. The
counterclockwise traversal of the HLD is explained as follows: the poloidal
magnetic field in the ADAF forces the flow to remain ADAF and the source to
move upwards in the HLD rather than to turn left. Thus, the history of the
system determines the counterclockwise traversal of the HLD. As a result, no
BHT is expected to ever traverse the entire HLD curve in the clockwise
direction.
Conclusions: We offer a physical interpretation of accretion and ejection in
BHTs with only one parameter, the mass transfer rate.Comment: Accepted for publication in A&
Therapeutic vulnerability of multiple myeloma to MIR17PTi, a first-in-class inhibitor of pri-mir-17-92
The microRNA cluster miR-17-92 is oncogenic and represents a valuable therapeutic target in c-MYC (MYC)-driven malignancies. Here, we developed novel LNA gapmeR antisense oligonucleotides (ASOs) to induce RNase H-mediated degradation of MIR17HG primary transcripts and, consequently, to prevent biogenesis of miR-17-92 microRNAs (miR-17-92s). The leading LNA-ASO, named MIR17PTi, impaired proliferation of several cancer cell lines (n=48) established from both solid and hematologic tumors by on-target antisense activity, and more effectively as compared to miR-17-92s inhibitors. By focusing on multiple myeloma (MM), we found that MIR17PTi triggers apoptosis via impairment of homeostatic MYC/miR-17-92 feed-forward loops (FFLs) in patient-derived MM cells; and induced MYC-dependent synthetic lethality. We show that alteration of a BIM-centered FFL is instrumental for MIR17PTi to induce cytotoxicity in MM cells. MIR17PTi exerts strong in vivo anti-tumor activity in NOD-SCID mice bearing clinically relevant models of MM, with advantageous safety and pharmacokinetics profiles in non-human primates. Altogether, MIR17PTi is a novel pharmacological tool to be tested in early-phase clinical trials against MM and other MYC-driven malignancies
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS
The chi_b(nP) quarkonium states are produced in proton-proton collisions at
the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS
detector. Using a data sample corresponding to an integrated luminosity of 4.4
fb^-1, these states are reconstructed through their radiative decays to
Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks
corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new
structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is
also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes.
This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table,
corrected author list, matches final version in Physical Review Letter
- …