971 research outputs found

    Analysis of foramen ovale with special emphasis on pterygoalar bar and pterygoalar foramen

    Get PDF
    The foramen ovale is of great surgical and diagnostic importance in procedures like percutaneous trigeminal rhizotomy for trigeminal neuralgia, transfacial fine needle aspiration technique in perineural spread of tumour, and electroencephalographic analysis. This study presents the anatomic variations in dimensions, appearance, number of foramen ovale (FO), and presence of pterygoalar bar and pterygoalar foramen. For the present study ninety dry adult human skulls were utilised. Anterioposterior (length) and transverse (width) diameters of FO were measured, and the presence of pterygoalar bar and foramen were observed. The most common shape of FO observed was like a figure ‘D’. The ranges of anteroposterior diameter of the right and left FO were 8.5–4.5 mm and 10–3 mm, respectively. The mean length of the right FO was 6.60 mm while that of the left FO was 6.26 mm. The ranges of transverse diameter (width) of both right and left foramen were 2.5–6 mm and 2–5 mm, respectively. The mean transverse diameter of the right FO was 3.70 mm and that of left was 3.34 mm. Bony spur in FO was seen in 6.66% of cases. A complete pterygoalar bar and foramen were observed in seven cases unilaterally, and in one case it was bilateral. Anteroposterior and transverse diameters of right FO were greater than left. Anatomical understanding, including the size, shape of FO, and presence of pterygoalar bar, has immense surgical and diagnostic importance. (Folia Morphol 2011; 70, 3: 149–153

    Mandibular Fractures and Associated Factors at a Tertiary Care Hospital

    Get PDF
    Objectives: The aim of this study was to evaluate the distribution, etiology and type of mandibular fractures in subjects referred to our institution. Methods: A retrospective study of 689 subjects, during the period from May 2010 to September 2013 with mandibular fractures was conducted. Information on age, gender, mechanism of injury and sites of trauma was obtained from the trauma registry. Data were tabulated and analyzed statistically. Results: A total of 653 subjects had mandibular fractures, out of which 574 were males. The mean age of the participants was 31.54 ± 13.07. The majority of the subjects were between 21-40 years of age, in both males (61.7%) and females (54.4%). The major cause of fractures was road traffic accidents (87.4%) followed by fall (6.9%) and assault (4%), with the least frequent being gunshot injuries (0.3%). Almost half of the patients had parasymphysis fractures (50.2%), followed by angle (24.3%), condyle (20.4%), ramus (2.3%) and coronoid (2%). A total of 115 patients had bilateral fractures out of which 29 had parasymphysis, 12 had body fractures and 74 had bilateral condylar fractures. Double mandibular fractures were reported in 193 subjects; out of which 151 subjects had double contralateral and 42 had double unilateral fractures. Triple unilateral fracture was reported in only one subject. A total of 338 subjects had multiple fractures among the study population. Conclusions: Mandibular fractures can be complicated and demanding, and have a compelling impact on patients’ quality of life. Our study reported that parasymphysis was the most common region involved in mandible fractures

    Two Mathematically Equivalent Versions of Maxwell's Equations

    Full text link
    This paper is a review of the canonical proper-time approach to relativistic mechanics and classical electrodynamics. The purpose is to provide a physically complete classical background for a new approach to relativistic quantum theory. Here, we first show that there are two versions of Maxwell's equations. The new version fixes the clock of the field source for all inertial observers. However now, the (natural definition of the effective) speed of light is no longer an invariant for all observers, but depends on the motion of the source. This approach allows us to account for radiation reaction without the Lorentz-Dirac equation, self-energy (divergence), advanced potentials or any assumptions about the structure of the source. The theory provides a new invariance group which, in general, is a nonlinear and nonlocal representation of the Lorentz group. This approach also provides a natural (and unique) definition of simultaneity for all observers. The corresponding particle theory is independent of particle number, noninvariant under time reversal (arrow of time), compatible with quantum mechanics and has a corresponding positive definite canonical Hamiltonian associated with the clock of the source. We also provide a brief review of our work on the foundational aspects of the corresponding relativistic quantum theory. Here, we show that the standard square-root and the Dirac equations are actually two distinct spin-12\tfrac{1}{2} particle equations.Comment: Appeared: Foundations of Physic

    Expediting DECam multimessenger counterpart searches with convolutional neural networks

    Full text link
    Searches for counterparts to multimessenger events with optical imagers use difference imaging to detect new transient sources. However, even with existing artifact-detection algorithms, this process simultaneously returns several classes of false positives: false detections from poor-quality image subtractions, false detections from low signal-to-noise images, and detections of preexisting variable sources. Currently, human visual inspection to remove the false positives is a central part of multimessenger follow-up observations, but when next generation gravitational wave and neutrino detectors come online and increase the rate of multimessenger events, the visual inspection process will be prohibitively expensive. We approach this problem with two convolutional neural networks operating on the difference imaging outputs. The first network focuses on removing false detections and demonstrates an accuracy of 92% on our data set. The second network focuses on sorting all real detections by the probability of being a transient source within a host galaxy and distinguishes between various classes of images that previously required additional human inspection. We find the number of images requiring human inspection will decrease by a factor of 1.5 using our approach alone and a factor of 3.6 using our approach in combination with existing algorithms, facilitating rapid multimessenger counterpart identification by the astronomical communit

    Precision medicine for mood disorders: objective assessment, risk prediction, pharmacogenomics, and repurposed drugs

    Get PDF
    Mood disorders (depression, bipolar disorders) are prevalent and disabling. They are also highly co-morbid with other psychiatric disorders. Currently there are no objective measures, such as blood tests, used in clinical practice, and available treatments do not work in everybody. The development of blood tests, as well as matching of patients with existing and new treatments, in a precise, personalized and preventive fashion, would make a significant difference at an individual and societal level. Early pilot studies by us to discover blood biomarkers for mood state were promising [1], and validated by others [2]. Recent work by us has identified blood gene expression biomarkers that track suicidality, a tragic behavioral outcome of mood disorders, using powerful longitudinal within-subject designs, validated them in suicide completers, and tested them in independent cohorts for ability to assess state (suicidal ideation), and ability to predict trait (future hospitalizations for suicidality) [3-6]. These studies showed good reproducibility with subsequent independent genetic studies [7]. More recently, we have conducted such studies also for pain [8], for stress disorders [9], and for memory/Alzheimer's Disease [10]. We endeavored to use a similar comprehensive approach to identify more definitive biomarkers for mood disorders, that are transdiagnostic, by studying mood in psychiatric disorders patients. First, we used a longitudinal within-subject design and whole-genome gene expression approach to discover biomarkers which track mood state in subjects who had diametric changes in mood state from low to high, from visit to visit, as measured by a simple visual analog scale that we had previously developed (SMS-7). Second, we prioritized these biomarkers using a convergent functional genomics (CFG) approach encompassing in a comprehensive fashion prior published evidence in the field. Third, we validated the biomarkers in an independent cohort of subjects with clinically severe depression (as measured by Hamilton Depression Scale, (HAMD)) and with clinically severe mania (as measured by the Young Mania Rating Scale (YMRS)). Adding the scores from the first three steps into an overall convergent functional evidence (CFE) score, we ended up with 26 top candidate blood gene expression biomarkers that had a CFE score as good as or better than SLC6A4, an empirical finding which we used as a de facto positive control and cutoff. Notably, there was among them an enrichment in genes involved in circadian mechanisms. We further analyzed the biological pathways and networks for the top candidate biomarkers, showing that circadian, neurotrophic, and cell differentiation functions are involved, along with serotonergic and glutamatergic signaling, supporting a view of mood as reflecting energy, activity and growth. Fourth, we tested in independent cohorts of psychiatric patients the ability of each of these 26 top candidate biomarkers to assess state (mood (SMS-7), depression (HAMD), mania (YMRS)), and to predict clinical course (future hospitalizations for depression, future hospitalizations for mania). We conducted our analyses across all patients, as well as personalized by gender and diagnosis, showing increased accuracy with the personalized approach, particularly in women. Again, using SLC6A4 as the cutoff, twelve top biomarkers had the strongest overall evidence for tracking and predicting depression after all four steps: NRG1, DOCK10, GLS, PRPS1, TMEM161B, GLO1, FANCF, HNRNPDL, CD47, OLFM1, SMAD7, and SLC6A4. Of them, six had the strongest overall evidence for tracking and predicting both depression and mania, hence bipolar mood disorders. There were also two biomarkers (RLP3 and SLC6A4) with the strongest overall evidence for mania. These panels of biomarkers have practical implications for distinguishing between depression and bipolar disorder. Next, we evaluated the evidence for our top biomarkers being targets of existing psychiatric drugs, which permits matching patients to medications in a targeted fashion, and the measuring of response to treatment. We also used the biomarker signatures to bioinformatically identify new/repurposed candidate drugs. Top drugs of interest as potential new antidepressants were pindolol, ciprofibrate, pioglitazone and adiphenine, as well as the natural compounds asiaticoside and chlorogenic acid. The last 3 had also been identified by our previous suicidality studies. Finally, we provide an example of how a report to doctors would look for a patient with depression, based on the panel of top biomarkers (12 for depression and bipolar, one for mania), with an objective depression score, risk for future depression, and risk for bipolar switching, as well as personalized lists of targeted prioritized existing psychiatric medications and new potential medications. Overall, our studies provide objective assessments, targeted therapeutics, and monitoring of response to treatment, that enable precision medicine for mood disorders

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters
    corecore