1,668 research outputs found
Investigation of the behaviour of electronic resistive switching memory based on MoSe<font size=-1><sub>2</sub></font>-doped ultralong Se microwires
published_or_final_versio
Electronic Origin of High Temperature Superconductivity in Single-Layer FeSe Superconductor
The latest discovery of high temperature superconductivity signature in
single-layer FeSe is significant because it is possible to break the
superconducting critical temperature ceiling (maximum Tc~55 K) that has been
stagnant since the discovery of Fe-based superconductivity in 2008. It also
blows the superconductivity community by surprise because such a high Tc is
unexpected in FeSe system with the bulk FeSe exhibiting a Tc at only 8 K at
ambient pressure which can be enhanced to 38 K under high pressure. The Tc is
still unusually high even considering the newly-discovered intercalated FeSe
system A_xFe_{2-y}Se_2 (A=K, Cs, Rb and Tl) with a Tc at 32 K at ambient
pressure and possible Tc near 48 K under high pressure. Particularly
interesting is that such a high temperature superconductivity occurs in a
single-layer FeSe system that is considered as a key building block of the
Fe-based superconductors. Understanding the origin of high temperature
superconductivity in such a strictly two-dimensional FeSe system is crucial to
understanding the superconductivity mechanism in Fe-based superconductors in
particular, and providing key insights on how to achieve high temperature
superconductivity in general. Here we report distinct electronic structure
associated with the single-layer FeSe superconductor. Its Fermi surface
topology is different from other Fe-based superconductors; it consists only of
electron pockets near the zone corner without indication of any Fermi surface
around the zone center. Our observation of large and nearly isotropic
superconducting gap in this strictly two-dimensional system rules out existence
of node in the superconducting gap. These results have provided an unambiguous
case that such a unique electronic structure is favorable for realizing high
temperature superconductivity
Climate change, water management and stakeholder analysis in the Dongjiang River basin in South China
This article proposes a systematic analysis of water management and allocation on the scale of a river basin, considering climate impacts and stakeholder networks in the Dongjiang River basin in South China. Specific approaches are integrated to explore various subtopics. Findings indicate a slight increase of precipitation in the basin and strong fluctuations in this century due to climate extremes, which may lead to seasonal or quality-related water shortages. It is highlighted that alternative options for holistic water management are needed in the basin, and participatory water allocation mechanisms and establishment of a basin-wide management framework could be helpful
Fully gapped topological surface states in BiSe films induced by a d-wave high-temperature superconductor
Topological insulators are a new class of materials, that exhibit robust
gapless surface states protected by time-reversal symmetry. The interplay
between such symmetry-protected topological surface states and symmetry-broken
states (e.g. superconductivity) provides a platform for exploring novel quantum
phenomena and new functionalities, such as 1D chiral or helical gapless
Majorana fermions, and Majorana zero modes which may find application in
fault-tolerant quantum computation. Inducing superconductivity on topological
surface states is a prerequisite for their experimental realization. Here by
growing high quality topological insulator BiSe films on a d-wave
superconductor BiSrCaCuO using molecular beam epitaxy,
we are able to induce high temperature superconductivity on the surface states
of BiSe films with a large pairing gap up to 15 meV. Interestingly,
distinct from the d-wave pairing of BiSrCaCuO, the
proximity-induced gap on the surface states is nearly isotropic and consistent
with predominant s-wave pairing as revealed by angle-resolved photoemission
spectroscopy. Our work could provide a critical step toward the realization of
the long sought-after Majorana zero modes.Comment: Nature Physics, DOI:10.1038/nphys274
Development of a chemically defined medium and discovery of new mitogenic growth factors for mouse hepatocytes: Mitogenic effects of FGF1/2 and PDGF
Chemically defined serum-free media for rat hepatocytes have been useful in identifying EGFR ligands and HGF/MET signaling as direct mitogenic factors for rat hepatocytes. The absence of such media for mouse hepatocytes has prevented screening for discovery of such mitogens for mouse hepatocytes. We present results obtained by designing such a chemically defined medium for mouse hepatocytes and demonstrate that in addition to EGFR ligands and HGF, the growth factors FGF1 and FGF2 are also important mitogenic factors for mouse hepatocytes. Smaller mitogenic response was also noticed for PDGF AB. Mouse hepatocytes are more likely to enter into spontaneous proliferation in primary culture due to activation of cell cycle pathways resulting from collagenase perfusion. These results demonstrate unanticipated fundamental differences in growth biology of hepatocytes between the two rodent species. Copyright: © 2014 Reekie et al
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Integration of decision support systems to improve decision support performance
Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes
Distinct genes related to drug response identified in ER positive and ER negative breast cancer cell lines
Breast cancer patients have different responses to chemotherapeutic treatments. Genes associated with drug response can provide insight to understand the mechanisms of drug resistance, identify promising therapeutic opportunities, and facilitate personalized treatment. Estrogen receptor (ER) positive and ER negative breast cancer have distinct clinical behavior and molecular properties. However, to date, few studies have rigorously assessed drug response genes in them. In this study, our goal was to systematically identify genes associated with multidrug response in ER positive and ER negative breast cancer cell lines. We tested 27 human breast cell lines for response to seven chemotherapeutic agents (cyclophosphamide, docetaxel, doxorubicin, epirubicin, fluorouracil, gemcitabine, and paclitaxel). We integrated publicly available gene expression profiles of these cell lines with their in vitro drug response patterns, then applied meta-analysis to identify genes related to multidrug response in ER positive and ER negative cells separately. One hundred eighty-eight genes were identified as related to multidrug response in ER positive and 32 genes in ER negative breast cell lines. Of these, only three genes (DBI, TOP2A, and PMVK) were common to both cell types. TOP2A was positively associated with drug response, and DBI was negatively associated with drug response. Interestingly, PMVK was positively associated with drug response in ER positive cells and negatively in ER negative cells. Functional analysis showed that while cell cycle affects drug response in both ER positive and negative cells, most biological processes that are involved in drug response are distinct. A number of signaling pathways that are uniquely enriched in ER positive cells have complex cross talk with ER signaling, while in ER negative cells, enriched pathways are related to metabolic functions. Taken together, our analysis indicates that distinct mechanisms are involved in multidrug response in ER positive and ER negative breast cells. © 2012 Shen et al
Lattice Boltzmann simulations of soft matter systems
This article concerns numerical simulations of the dynamics of particles
immersed in a continuum solvent. As prototypical systems, we consider colloidal
dispersions of spherical particles and solutions of uncharged polymers. After a
brief explanation of the concept of hydrodynamic interactions, we give a
general overview over the various simulation methods that have been developed
to cope with the resulting computational problems. We then focus on the
approach we have developed, which couples a system of particles to a lattice
Boltzmann model representing the solvent degrees of freedom. The standard D3Q19
lattice Boltzmann model is derived and explained in depth, followed by a
detailed discussion of complementary methods for the coupling of solvent and
solute. Colloidal dispersions are best described in terms of extended particles
with appropriate boundary conditions at the surfaces, while particles with
internal degrees of freedom are easier to simulate as an arrangement of mass
points with frictional coupling to the solvent. In both cases, particular care
has been taken to simulate thermal fluctuations in a consistent way. The
usefulness of this methodology is illustrated by studies from our own research,
where the dynamics of colloidal and polymeric systems has been investigated in
both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures,
76 page
Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly
Stress granules (SGs) are mRNA-protein aggregates induced during stress, which accumulate in many neurodegenerative diseases. Previously, the autophagy-lysosome pathway and valosin-containing protein (VCP), key players of the protein quality control (PQC), were shown to regulate SG degradation. This is consistent with the idea that PQC may survey and/or assist SG dynamics. However, despite these observations, it is currently unknown whether the PQC actively participates in SG assembly. Here, we describe that inhibition of autophagy, lysosomes and VCP causes defective SG formation after induction. Silencing the VCP co-factors UFD1L and PLAA, which degrade defective ribosomal products (DRIPs) and 60S ribosomes, also impaired SG assembly. Intriguingly, DRIPs and 60S, which are released from disassembling polysomes and are normally excluded from SGs, were significantly retained within SGs in cells with impaired autophagy, lysosome or VCP function. Our results suggest that deregulated autophagy, lysosomal or VCP activities, which occur in several neurodegenerative (VCP-associated) diseases, may alter SG morphology and composition
- …
