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Abstract

Breast cancer patients have different responses to chemotherapeutic treatments. Genes associated with drug response can
provide insight to understand the mechanisms of drug resistance, identify promising therapeutic opportunities, and
facilitate personalized treatment. Estrogen receptor (ER) positive and ER negative breast cancer have distinct clinical
behavior and molecular properties. However, to date, few studies have rigorously assessed drug response genes in them. In
this study, our goal was to systematically identify genes associated with multidrug response in ER positive and ER negative
breast cancer cell lines. We tested 27 human breast cell lines for response to seven chemotherapeutic agents
(cyclophosphamide, docetaxel, doxorubicin, epirubicin, fluorouracil, gemcitabine, and paclitaxel). We integrated publicly
available gene expression profiles of these cell lines with their in vitro drug response patterns, then applied meta-analysis to
identify genes related to multidrug response in ER positive and ER negative cells separately. One hundred eighty-eight
genes were identified as related to multidrug response in ER positive and 32 genes in ER negative breast cell lines. Of these,
only three genes (DBI, TOP2A, and PMVK) were common to both cell types. TOP2A was positively associated with drug
response, and DBI was negatively associated with drug response. Interestingly, PMVK was positively associated with drug
response in ER positive cells and negatively in ER negative cells. Functional analysis showed that while cell cycle affects drug
response in both ER positive and negative cells, most biological processes that are involved in drug response are distinct. A
number of signaling pathways that are uniquely enriched in ER positive cells have complex cross talk with ER signaling,
while in ER negative cells, enriched pathways are related to metabolic functions. Taken together, our analysis indicates that
distinct mechanisms are involved in multidrug response in ER positive and ER negative breast cells.
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Introduction

Although a multitude of chemotherapeutic drugs have been

widely used in various combinations to treat breast cancer

patients, the response to chemotherapy treatment varies consid-

erably among patients; even among patients who have identical

histological type. Genomic research suggests that response to

treatment is significantly related to intrinsic molecular character-

istics of the tumor. Studying these genes has important biological

significance and potential clinical utility. It may help in

understanding the molecular mechanisms of drug response,

classifying patients to different groups, and identifying new

potential therapeutic targets to facilitate drug development.

During the past several years, various microarray expression

studies have identified genes whose expression is related to

response to chemotherapeutic agents [1,2,3,4,5]. However, most

of these studies did not take into account the heterogeneity of

breast cancer. It is increasingly recognized that breast cancer is a

disease with distinct clinical behavior and molecular properties, in

particular, estrogen receptor (ER) positive and ER negative

cancers are the two most distinct subtypes [6]. ER negative

cancers tend to be more sensitive to chemotherapy, but associated

with poor clinical outcome [7]. Due to the substantial molecular

difference between ER positive and ER negative tumors, it is

hypothesized that different genes are related to drug response in

ER positive and ER negative cancer, a finding suggested by a

meta-analysis of breast cancer patient tumor samples [8].

However, to date, few studies have rigorously assessed drug

response genes in ER negative and ER positive breast cancer.

Since ER negative cells generally are more responsive than ER

positive cells and ER status is a strong factor associated with drug

response, genes identified from mixed breast tumors tend to be

also related to ER status, and may be less informative after

stratifying by ER subtype. A comprehensive analysis of identifying

genes related to drug response in ER positive and ER negative has

yet to be performed.

In the current analysis, we used human breast cancer cell lines

to systematically identify genes whose expression is related to

response to chemotherapeutic agents, especially multiple chemo-

therapeutic agents for ER positive and ER negative cells. The
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reason we focus on genes related to multidrug response is that

multiple chemotherapeutic drugs have been widely used in various

combinations in actual clinical treatment. Using cell lines rather

than patient response data allowed us to control several variables.

We used gene expression profiles measured by the same platform

and a well-established chemoresponse assay to directly assess cell

sensitivity to multiple drugs simultaneously, which is not possible

to assess in patients. Owing to these advantages, cell lines have

been extensively used to investigate mechanisms of drug response

[9,10,11,12]. Currently, a vote counting approach has been widely

used for the identification of genes associated with multidrug

response [10,12]. In this two-step approach, the first step identifies

differentially expressed (DE) genes for a specific drug, i.e., by

integrating gene expression profiles and drug response patterns,

genes whose expression is either positively or negatively associated

with drug response are identified. The second step is to identify

genes that are associated with the majority of tested drugs. While

the two-step approach is simple and straight forward, it does not

control false discovery rate. Moreover the two-step approach is not

effective when it is difficult to detect DE genes in the first step.

Several previous studies indicate that ER negative breast cancer is

very homogeneous and a substantially large number of samples are

needed to detect DE genes. To overcome these challenges, we

adopted the r-th meta analysis method [13], a more powerful

method and one that has been used in clinical studies, to identify

multidrug response genes.

Specifically, taking advantage of 27 well-studied breast cell lines

(11 ER positive and 16 ER negative) whose gene expressions are

publicly available, we tested their sensitivity to 7 chemotherapy

agents commonly used singly or in combination to treat breast

cancer patients: cyclophosphamide, docetaxel, doxorubicin, epir-

ubicin, fluorouracil, gemcitabine, and paclitaxel. We then used r-

th meta-analysis and identified 188 genes related to multidrug

response in ER positive cells, 32 genes in ER negative cells, and

only 3 genes common to both cell types. Further functional

analysis indicated that while cell cycle affects drug response in both

ER positive and negative cells, most molecular mechanisms

involved in multidrug response in ER positive cells are distinct

from those in ER negative cells.

Materials and Methods

Material
In this study, 27 breast cell lines (as shown in Table 1) were

obtained from American Type Culture Collection (Manassas, VA,

USA). Detailed information on cell lines, including ER, PR,

HER2, TP53, source, tumor type, age, and ethnicity is available

[14]. Cells were cultured in RPMI 1640 (Mediatech, Herndon,

VA, USA). FBS was purchased from HyClone (Logan, UT, USA).

The following chemotherapeutic agents were used in the current

study and prepared as recommended by the manufacturer in the

growth media used for cell maintenance and treatment: pre-

activated cyclophosphamide (4-hydroperoxycyclophosphamide)

(0.2 mM–13.6 mM), docetaxel (0.1 nM–25 nM), doxorubicin

(2 nM–1.2 mM), epirubicin (0.7 nM–13.5 mM), fluorouracil

(0.1 mM–50 mM), gemcitabine (0.7 nM–50 nM), and paclitaxel

(0.2 nM–100 nM).

Assay for Drug Response
After reaching approximately 80% confluence, each cell line

was trypsinized and seeded into 384-well microtiter plates

(Corning, Lowell, MA, USA). Drug response of the cell lines

was determined by ChemoFxH, an established chemosensitivity

and response assay as described previously [15]. Cells were plated

in triplicate and treated with 10 serial doses of each chemother-

apeutic treatment after 24 hours of attachment (untreated cells

were used as a control). After an incubation period of 72 hours, the

cells were fixed with ethanol, stained with DAPI, and counted.

The number of cells remaining after drug treatment was used to

determine survival fraction (SF = average cell count dose x/

average cell count control). Dose-response curves were plotted to

determine chemosensitivity, which is based on areas under the

curve (AUC). Lower AUC scores indicate greater sensitivity.

Preprocessing of Microarray Data
Gene expression profiles of 27 breast cell lines are publicly

available and were downloaded from ArrayExpress [16] with

accession number E-TABM-157. The raw microarray data were

processed by the software package RMA [17] for background

adjustment and quantitative normalization. The processed data

were log2-transformed, and probes in Affymetrix HGU133a were

mapped to gene symbols. If a gene symbol was associated with

multiple probes, the one with the largest interquartile range (IQR)

was chosen. Non-specific filtering was performed to filter out

probes that had small variations or low expression values.

Correlation of Gene Expression and Drug Response
To analyze how gene expression is related to individual drug

response in ER positive and negative cell lines, we calculated a

standardized regression coefficient between drug response and

gene expression [18]. Gene-drug correlation can be either positive

or negative. A positive correlation indicates that cell lines that

express more of the gene tend to more be responsive to the tested

drug, and a negative correlation indicates that cell lines that

express more of the gene tend to be more resistant to the drug.

Further, two dimensional hierarchical clustering was applied to the

gene-drug correlation matrix. Genes were clustered based on their

correlations with drugs, and drugs in ER positive and ER negative

cells were clustered based on their correlations with genes.

Identification of Genes Related to Multidrug Response
through Meta-analysis

Meta-analysis was then applied to identify genes that are related

to multidrug response. In this study, we defined genes that are

differentially expressed with respect to at least 5 out of 7 drugs as

multidrug response genes and r-th rank statistic was applied. The

details of the meta-analysis algorithm are shown in Appendix S1.

The q-values of the r-th rank statistic were evaluated by a

permutation test and genes whose q-values were less than 0.01

were considered to be related to multidrug response. For each

gene, the direction for multiple drugs was defined as the direction

of the majority of drugs.

Functional Analysis of Genes Related to Multidrug
Response

Genes related to multidrug response were evaluated by

Ingenuity Pathways Analysis (IPA) software (Ingenuity System,

Redwood City, CA, USA) to identify associated pathways. For

each pathway, a Fischer’s exact test was used to calculate a p-

value. Pathways with p-values less than 0.05 were considered

enriched. We also performed network analysis to understand the

global functional connection of these identified genes. The

identified genes were used as the starting point for generating

biologic networks of size 35. Networks with p-values less than

0.001 were considered significant. A detailed description of IPA

can be found on the Ingenuity Systems website (http://www.

ingenuity.com/).

Distinct Drug Response Genes in ER+ and ER2 Cells
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Results

Drug Response of Cell Lines
Wemeasuredthedrugresponseof27well-characterizedbreastcell

lines to the following 7 widely used chemotherapeutic agents:

cyclophosphamide, docetaxel, doxorubicin, epirubicin, fluorouracil,

gemcitabine, and paclitaxel (Table 1). These cell lines exhibited a

heterogeneous response to all 7 drugs. Consistent with other studies

[19],ouranalysis showedthatERnegativecell lines tendedtobemore

responsive to chemotherapy drugs. In addition, drugs with similar

mechanisms showedsimilar responsepatterns.Amongthe7drugswe

tested, two taxane drugs, paclitaxel and docetaxel, were clustered

together,andtwoanthracyclineantitumorantibiotics,epirubicinand

doxorubicin, were clustered together (Figure 1).

Clustering Analysis on the Gene-drug Correlation
Since genes may play distinct roles in drug response for ER

positive and negative cell lines, we calculated gene-drug correla-

tion for ER positive and negative cell lines separately. Gene-drug

correlation can be either positive or negative. Positive correlation

means cell lines that express more of the gene tend to be more

responsive to the tested drug. On the contrary, negative

correlation means cell lines that express more of the gene tend

to be more resistant to the tested drug.

We performed two dimensional clustering analyses on the basis

of gene-drug correlation. In Figure 2, the Y axis represents the

cluster tree of drugs. Generally, drugs in ER positive and ER

negative cells formed distinct clusters, although there were some

exceptions. Moreover, within each cluster (ER positive or ER

negative) drugs with similar mechanisms, e.g. doxrubicin and

epirubicin, clustered together. On the X axis, genes with a similar

extent and direction of association with drugs in ER positive and

negative cell lines were clustered together. Genes were clustered

into 5 groups based on their correlations with drugs in ER positive

and negative cell lines. For most genes, within ER positive cells or

ER negative cells, their associations with the 7 tested drugs were in

Table 1. Summary of chemosensitivity of 27 breast cell lines to 7 different drugs, measured by ChemoFx, their ER status and
subtype.

Taxol Antitumor Antibiotic Antimetabolites
Alkylating
Agents

ER
Sub
type

Doce
taxel Pacli taxel Doxo rubicin Epirubicin Fluorouracil

Gemci
tabine

Cyclophos
phamide

MDAMB361 Pos Lu 8.45 9.26 8.96 8.10 9.93 9.43 9.56

HCC1428 Pos Lu 8.60 9.00 8.38 7.01 10.69 8.91 8.33

MDAMB175VII Pos Lu 8.32 7.88 7.5 6.52 10.54 7.94 9.24

MDAMB453 Neg Lu 7.75 7.83 7.15 6.59 9.51 8.69 9.10

BT474 Pos Lu 7.57 7.64 7.64 7.04 9.88 8.41 7.86

CAMA1 Pos Lu 7.69 7.28 7.53 6.13 9.55 8.26 8.36

ZR7530 Pos Lu 7.87 7.93 6.88 5.93 8.86 8.61 7.93

HCC1569 Neg BaA 6.76 7.55 7.35 6.39 9.76 7.43 7.30

HCC1937 Neg BaA 7.17 7.37 6.96 6.07 9.57 8.13 6.70

ZR751 Pos Lu 6.19 7.4 6.62 5.98 9.28 7.96 8.52

BT20 Neg BaA 6.7 7.06 6.38 5.47 8.86 8.47 7.73

MDAMB134VI Pos Lu 8.23 7.63 5.98 4.95 8.63 7.22 7.62

MCF7 Pos Lu 7.29 7.04 6.54 5.76 8.09 7.99 7.12

MDAMB468 Neg BaA 7.42 6.92 5.93 4.98 9.29 8.67 5.71

MDAMB436 Neg BaB 7.79 7.46 5.8 5.24 9.28 6.38 6.6

HCC202 Neg Lu 7.81 9.21 5.48 5.07 6.06 6.07 5.95

T47D Pos Lu 6.49 6.93 4.62 3.78 8.85 6.69 6.51

HCC1143 Neg BaA 5.41 6.24 5.57 5.07 8.73 4.81 7.02

AU565 Neg Lu 5.67 5.47 5.5 4.42 9.16 5.53 6.9

HCC1187 Neg BaA 6.02 5.91 4.89 4.1 8.37 7.41 5.28

BT549 Neg BaB 6.56 6.33 5.00 4.31 7.79 5.25 6.41

MCF10Aa Neg BaB 5.33 5.44 5.00 4.02 6.76 6.00 7.31

SKBR3 Neg Lu 6.65 5.78 4.06 3.26 6.35 5.24 7.39

UACC812 Pos Lu 7.03 5.95 3.88 2.97 8.65 3.89 6.31

MDAMB231 Neg BaB 6.34 6.29 3.91 3.11 8.72 3.92 5.97

MDAMB157 Neg BaB 4.81 5.3 4.02 3.16 8.33 5.10 6.74

HCC38 Neg BaB 5.38 5.49 4.36 3.59 7.85 3.09 6.44

Cell lines are ranked in descending order of the average of chemosensitivity score (AUC), with lower AUC scores indicating greater sensitivity. ER status and subtype
information was from [14].
ais a non-malignant cell line since it was derived from a reduction mammoplasty.
doi:10.1371/journal.pone.0040900.t001
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the same direction, although to varying extents. However, for

genes in different clusters, the direction across ER positive and ER

negative cells differed. For clusters 4 and 5, the direction of gene-

drug association tended to be similar in ER positive and ER

negative cells, whereas, for clusters 1 and 2, the gene-drug

correlations tended to be opposite in ER positive and ER negative

cells. The gene-drug associations in cluster 3 were weaker than in

the other four clusters.

Identification of Genes Related to Multidrug Response
through Meta-analysis

We applied r-th meta-analysis to identify genes related to

multidrug response in breast cancer. The majority of genes that

were associated with multidrug response among ER positive cells

were not statistically significantly associated with multidrug

response among ER negative cells, and vice versa.

Using a q-value less than 0.01 as the cutoff, 188 genes were

identified as related to multidrug response in ER positive cells

(Table S1). Among them, 123 were positively related and 65 were

negatively related to drug response. A large number of identified

genes are related to cell cycle, growth or apoptosis. Cyclin-

dependent protein kinases (CDKs) and their regulators, such as

cyclins, are involved in cell cycle regulation. Among the identified

genes, CDK7, CCNB1 (cyclin B1) and CCNG1 (cyclin G1) fall

under this category. Ubiquitin-mediated degradation plays a

crucial role in a variety of cellular processes including cell division,

signal transduction, apoptosis, and immunity and inflammatory

response [20]. Several of the identified genes (e.g. UBE2S,

UBE2G1, and PSMD14) encode proteins that are involved in

ubiquitin-mediated protein degradation. UBE2S and UBE2G1

encode ubiquitin-conjugating enzymes; PSMD14 is a component

of the 26S proteasome, which is involved in the ATP-dependent

degradation of ubiquitinated proteins [21]. Various kinases (e.g.

CKS1B, CRKL, PRKCI, and PKMYT1) and phosphatases (e.g.

PPP2R2A, PPP2R5E, and PTPN1) were identified. Kinases and

phosphatases have opposing action of adding or removing

(respectively) phosphaste groups, and therefore, play an integral

role in regulating cell growth, proliferation and apoptosis.

Furthermore, several genes (e.g. RRM2, NQO1, CBR1, MT1H,

MT1P) which have been known to be related to drug response in

other studies were also identified. CBR1 (Carbonyl reductase 1)

encodes a NADPH-dependent oxidoreductase, an enzyme that

metabolizes many toxic environmental quinones and pharmaco-

logical relevant substrates such as doxorubicin [22]; NQO1

encodes enzyme NAD(P)H dehydrogenase 1, which is critically

involved in the detoxification of xenobiotics and activation of

anticancer drugs [23]. MT1H and MT1P2 are members of the

metallothionein family, which has a protective role against heavy

metal toxicity. Their increased expression has been demonstrated

to be associated with drug resistance [24].

A total of 32 genes were identified as related to multidrug

response in ER negative cells (Table S2). Among them, 14 were

positively and 18 were negatively related to drug response.

Compared to the ER positive cells, far fewer number of genes were

identified in the ER negative cells. This may be because ER

negative cells are more homogeneous, or due to the inclusion of a

non–malignant cell line (MCF10A) in the group of ER negative

cell lines. Similar to genes identified in the ER positive group,

several genes (e.g. IGFBP2, PMF1, and SLC9A1) identified in the

ER negative group are also related to cell cycle, growth or

apoptosis. In addition, several other genes (e.g., ALDH3B2 and

PRDX2) were involved in metabolism and reported to be related

to drug response: ALDH3B2 encodes a member of the aldehyde

dehydrogenase (ALDH) family. ALDH has been reported to play

Figure 1. 2D scatter plot of chemotherapeutic agents with respect to the first and second principal components.
doi:10.1371/journal.pone.0040900.g001
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an important role in cancer therapeutics; it can decrease the

effectiveness of some anticancer drugs, such as cyclophosphamide

and ifosfamide, by detoxifying their major active aldehyde

metabolites [25]; PRDX2 encodes a member of the peroxiredoxin

family of antioxidant enzymes, which play important roles in

maintaining the intracellular redox homeostasis. There is evidence

suggesting that PRDX2 may have a proliferative effect and play

important roles in cancer development or progression as well [26].

Despite the fact that distinct genes are related to drug response

for ER positive versus ER negative cell lines, 3 genes (TOP2A,

DBI, and PMVK) were common between the two groups. TOP2A

encodes a DNA topoisomerase which play an important role in

both DNA replication and transcription. A number of studies have

shown that TOP2A gene expression is associated with in vitro

drug response [27] and better clinical outcome [28,29]. Consistent

with these previous studies, in the current study, gene expression of

TOP2A is positively associated with multidrug response

(Figure 3A). DBI (diazepam binding inhibitor) is regulated by

hormones and is known to play roles in proliferation and

mitogenesis. DBI had been previously identified as a predictor of

Figure 2. Heatmap of gene-drug correlation. Each block represents a gene-drug correlation in ER positive or ER negative cell lines. Red boxes
represent high negative gene-drug correlations, i.e., cell lines with higher gene expression tend to be more resistant, and green boxes represent high
positive gene-drug correlations, i.e. cell lines with higher gene expression tend to be more sensitive. The bar across the top indicates the multidrug
response genes identified in ER positive and ER negative cell lines. Yellow corresponds to ER negative and blue corresponds to ER positive.
doi:10.1371/journal.pone.0040900.g002
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outcome after chemotherapy [30,31]. In this study, gene

expression of DBI is negatively associated with multidrug response

(Figure 3B). It is interesting to note that expression of PMVK, the

gene coding for a peroxisomal enzyme, is differentially related to

multidrug response in ER positive and negative cells; i.e, its

expression is positively correlated with drug response in ER

positive cells and negatively correlated in ER negative cells

(Figure 3C).

The observation of genes associated with drug response in

different directions is intriguing. To determine if this is a special

case, the criteria for identifying multidrug response genes was

relaxed. When the cutoff was set up to 0.1, another 5 genes

(LDHB, ZMYND11, PDAP1, RQCD1, ERMP1) were identified

as having opposite associations in ER positive and ER negative

cells. Functional analysis indicates that these genes are involved in

various biological processes, including cell cycle, cell proliferation,

and metabolic processes. Although previous studies have shown

that substantial genes play distinct roles in ER positive and ER

negative cancers, few studies have reported genes that play

opposing roles in different disease subtypes. This finding suggests

an appealing avenue for further research into the biological

mechanisms of drug response.

Figure 3. Association between gene expression of three genes [TOP2A (A), DBI (B) and PMVK(C)] and drug response in ER positive
and ER negative breast cell lines. The x-axis represents cell line drug response, represented as AUC value; higher AUC values are correlated with
drug resistance, while low AUC values are correlated with drug sensitivity. The y-axis represents the expression of genes in cell lines.
doi:10.1371/journal.pone.0040900.g003
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Distinct Functions of Multidrug Response Genes
Identified in ER Positive vs. ER Negative Cells

We applied Ingenuity Pathways Analysis (IPA) software to

identify enriched pathways that are related to multidrug response

in ER positive and ER negative breast cell lines separately. In IPA,

pathways are organized hierarchically to different functional

classes. IPA includes two broad functional groups; one encom-

passes signaling pathways and the other metabolic pathways. As

shown in Table 2, the enriched pathways in ER positive and ER

negative cells were distinct. With a p-value ,0.05, 18 pathways

were identified in ER positive and 5 in ER negative cell lines. For

ER positive multidrug response genes, 17 of the 18 enriched

pathways were signaling pathways related to apoptosis, cancer, cell

cycle regulation, cellular immune response, cellular stress and

injury, cytokine signaling, and growth factor signaling. For ER

negative multidrug response genes, the 5 enriched pathways

(glycolysis/gluconeogenesis, phenyalanine metabolism, methane

metabolism, and stilbene, coumarine, and lignin biosynthesis) were

all related to metabolic functions.

To further understand the function of these multidrug response

genes and how they coordinately work together, we performed

network analyses using IPA software (Table S3). Twelve significant

networks were identified in ER positive cells and 2 in ER negative

cells. The 12 networks in ER positive cells are related to a broad

range of functions that includes cell cycle, gene expression, cell

signaling, immunological disease, and inflammatory response. The

2 networks in ER negative cells are related to cell cycle, cellular

growth and proliferation, and cell death. For both ER positive and

ER negative cells, multiple networks are related to cell cycle.

Discussion

Recently, it has been increasingly recognized that ER positive

and ER negative breast cancer are distinct types of breast cancer.

To date, few studies have rigorously assessed drug response genes

in ER negative and ER positive breast cancer. In this analysis,

genes related to multidrug response in ER positive and ER

negative breast cell lines were comprehensively identified. The

results show that the genes related to multidrug response in ER

positive cell lines are distinct from those in ER negative cell lines.

Among 188 genes identified in ER positive cell lines (123 positively

related, 65 negatively related) and 32 identified in ER negative cell

lines (14 positively related, 18 negatively related), two genes

(TOP2A and DBI) have similar association in both cell types, and

one gene (PMVK) associated in opposing directions in each cell

type. By strictly controlling variables, including using gene

expression profiles measured by the same platform and the same

set of cells, testing the same panel of drugs, and using the same

well-established chemoresponse assay, our results strongly indicate

that the limited gene overlap is related to differences inherent in

ER status.

Functional analysis also indicates that different biological

processes are related to drug response in ER positive versus ER

negative breast cells. Most of the enriched pathways in ER positive

cells are associated with various types of cellular signaling,

Table 2. Enriched pathways identified in ER positive and negative breast cancer cells by IPA.

Ingenuity Canonical Pathways -log(p-value) Ratio Molecules

ER positive Cell Cycle: G2/M DNA Damage Checkpoint
Regulation

3.450 0.102 CDK7,CKS1B,TOP2A,PKMYT1,CCNB1

Mitotic Roles of Polo-Like Kinase 3.040 0.078 HSP90B1,PPP2R2A,PKMYT1, PPP2R5E,CCNB1

IL-3 Signaling 2.370 0.068 SHC1,STAT6,PIK3C2B,PRKCI,CRKL

Neuregulin Signaling 2.080 0.049 SHC1,HSP90B1,PRKCI,CRKL,ITGA3

Hypoxia Signaling in the Cardiovascular System 1.960 0.059 HSP90B1,UBE2G1,NQO1,UBE2S

Cell Cycle Regulation by BTG Family Proteins 1.890 0.083 CNOT7,PPP2R2A,PPP2R5E

JAK/Stat Signaling 1.890 0.063 SHC1,STAT6,PIK3C2B,PTPN1

ERK/MAPK Signaling 1.810 0.034 SHC1,PIK3C2B,PRKCI,PPP2R2A, CRKL,PPP2R5E,ITGA3

Regulation of eIF4 and p70S6K Signaling 1.750 0.038 SHC1,PIK3C2B,PPP2R2A,PPP2R5E, ITGA3

Xenobiotic Metabolism Signaling 1.660 0.027 LIPA,PIK3C2B,HSP90B1,PRKCI,
PPP2R2A,NQO1,PPP2R5E,CITED2

Cyclins and Cell Cycle Regulation 1.640 0.045 PPP2R2A,CDK7,PPP2R5E,CCNB1

p70S6K Signaling 1.570 0.039 SHC1,PIK3C2B,PRKCI,PPP2R2A, PPP2R5E

PI3K/AKT Signaling 1.570 0.036 SHC1,HSP90B1,PPP2R2A, PPP2R5E,ITGA3

Insulin Receptor Signaling 1.470 0.036 SHC1,PIK3C2B,PRKCI,CRKL, PTPN1

Biosynthesis of Steroids 1.420 0.017 PMVK,NQO1

NRF2-mediated Oxidative Stress Response 1.410 0.031 PIK3C2B,PRKCI,NQO1,GPX2, SQSTM1,CBR1

mTOR Signaling 1.330 0.031 PIK3C2B,PLD3,PRKCI,PPP2R2A, PPP2R5E

Glioma Invasiveness Signaling 1.310 0.050 PIK3C2B,HMMR,TIMP2

ER negative Glycolysis/Gluconeogenesis 3.110 0.022 ALDH3B2,PFKP,LDHB

Phenylalanine Metabolism 2.460 0.018 ALDH3B2,PRDX2

Methane Metabolism 1.460 0.015 PRDX2

Stilbene, Coumarine and Lignin Biosynthesis 1.430 0.014 PRDX2

Biosynthesis of Steroids 1.310 0.008 PMVK

doi:10.1371/journal.pone.0040900.t002
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including cell cycle regulation, apoptosis, cellular stress and injury,

cytokine signaling, and growth factor signaling. Noticeably, a

number of signaling pathways that are uniquely enriched in the

ER positive cell lines have complex cross talk with ER signaling at

the receptor level (HMMR and ITGA3), as well as downstream of

the receptor level, such as signaling adaptor proteins (e.g. SHC1),

kinases (e.g. PI3K, PRKC1, CRKL and ERK), phosphatases (e.g.

PPP2R2A, PPP2R5E), enzymes (NQO1), and transcription

regulators (e.g. CITED2, CNOT7 and STAT6).

In ER negative cells, all five enriched pathways are related to

metabolic functions, including Glycolysis/Gluconeogenesis, Phe-

nylalanine Metabolism, Methane Metabolism, Stilbene, Coumar-

ine and Lignin Biosynthesis, Biosynthesis of Steroids. This is

biologically reasonable since these pathways have been shown to

play important roles in cell adhesion and modulate signaling,

which may affect drug response. Particularly, previous studies

showed that cells with high glycolytic activity tend to have a

decreased sensitivity to various anticancer agents and inhibition of

glycolysis may be a promising therapeutic strategy [32].

In addition to mechanisms that were unique to each molecular

tumor type, functional analysis indicates that for both ER positive

and negative cell lines, the efficacy of anticancer treatment was

related to cell cycle and cell death (Table S3). Many chemother-

apeutic agents cause DNA damage or interfere with the ability of

cells to replicate DNA correctly. Cells that cannot replicate DNA

will often die by apoptosis. As such, regardless of distinct

mechanisms of action, the efficacy of anticancer treatments

depends on cell cycle. This observation that the efficacy of

anticancer treatment was related to cell cycle and cell death,

especially in ER positive cells is consistent with other studies.

Previous studies also show that although several genomic

signatures which have predictive value of drug response demon-

strate limited overlap among them, they all include genes that are

related to cell proliferation [33]. The fact that cell cycle and cell

death related genes have been identified from this cell based study,

which is consistent with results from patient studies, support the

feasibility of using cell line model to study drug response.

In this analysis, cell lines were used to identify genes related to

drug response. Compared to patient-based studies, cell lines afford

experimental advantages of controlling experimental variables, as

well as measuring the effect of multiple drugs simultaneously,

which cannot be done in patient studies. However, cell lines are

not identical to cells from patient samples, and the use of cell lines

ignores the influence of the tumor microenvironment on drug

response. Although breast cancer cell lines mirror many of the

biological and genomic properties of in vivo tumors, cell lines also

have characteristics that differ. For example, patient-based studies

have shown that, based on gene expression profiling, breast

cancers can be primarily classified as luminal-A, luminal-B,

HER2-enriched, and basal-like, as well as several other subtypes

[34,35,36,37,38]. In contrast, for breast cancer cell lines, there is

no obvious distinction between luminal-A and luminal-B subtypes,

and HER2-enriched cells do not form a separate subtype.

Moreover, basal-like cell lines form two clusters, with basal-B

generally being more responsive than basal-A [14]. Of the 27 cell

lines that were used in this study, all 11 ER positive cell lines are

classified as luminal (without A or B distinction), and, for the 16

ER negative cell lines, 6 were grouped into basal-A, 6 as basal-B

and 4 as luminal. Since breast cells lines of differing intrinsic

subtype and ER status display distinct response patterns (data not

shown), it would be informative to identify the genes related to

multidrug response when further stratifying the cell lines by both

intrinsic subtype and ER status in this current study. However, the

limited number of cell lines in each subgroup in this study has

prevented this type of additional analysis. In the future, as more

cell lines become available for research, drug response genes may

be identified by stratifying by both intrinsic subtype and ER status.

In addition, further investigations may be implemented towards

understanding the possible discrepancy between cell lines and

patient tumors with respect to intrinsic subtype, as well as

elucidating a mechanism for translating cell line-based findings to

patient tumors.

Finally, an additional strength of this study was the use of r-th

meta-analysis rather than the more commonly used two-step

approach [10,12]. The r-th meta-analysis employs a permutation

test for statistical inference and controls the false discovery rate.

This unified method is more powerful than the simpler methods.

Moreover, by controlling r-th, we were able to identify the genes

with biological interest. For example, in this analysis, we set r-th at

5 out of 7, which allowed us to identify the genes related to the

majority of drugs (5 out of 7). r-th can be set at a maximun to

identify genes that are important for all drugs tested or at a

minimum to identify those important for only a single drug.

Analysis with r-th setting at a maximum or minimum shows

similar trend that distinct genes are related to drug response in ER

positive vs ER negative cells.

In summary, by taking advantage of the established gene

expressions profiles of well-characterized breast cancer cell lines,

applying a more powerful analytical method, and examining ER

positive and ER negative cell lines separately, we have identified a

number of genes related to multidrug response in these cells.

Further, we have found that they are predominantly distinct in the

2 cell types and related to distinct cellular processes. These findings

provide a basis for further research into the biological mechanisms

of drug resistance. Such information may ultimately lead to the

identification of biomarkers for potential therapeutic options.
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