1,195 research outputs found

    The Euler spiral of rat whiskers

    Get PDF
    This paper reports on an analytical study of the intrinsic shapes of 523 whiskers from 15 rats. We show that the variety of whiskers on a rat’s cheek, each of which has different lengths and shapes, can be described by a simple mathematical equation such that each whisker is represented as an interval on the Euler spiral. When all the representative curves of mystacial vibrissae for a single rat are assembled together, they span an interval extending from one coiled domain of the Euler spiral to the other. We additionally find that each whisker makes nearly the same angle of 47∘ with the normal to the spherical virtual surface formed by the tips of whiskers, which constitutes the rat’s tactile sensory shroud or “search space.” The implications of the linear curvature model for gaining insight into relationships between growth, form, and function are discussed

    Differential rotation in giant planets maintained by density-stratified turbulent convection

    Full text link
    The zonal winds on the surfaces of giant planets vary with latitude. Jupiter and Saturn, for example, have several bands of alternating eastward (prograde) and westward (retrograde) jets relative to the angular velocity of their global magnetic fields. These surface wind profiles are likely manifestations of the variations in depth and latitude of angular velocity deep within the liquid interiors of these planets. Two decades ago it was proposed that this differential rotation could be maintained by vortex stretching of convective fluid columns that span the interiors of these planets from the northern hemisphere surface to the southern hemisphere surface. This now classic mechanism explains the differential rotation seen in laboratory experiments and in computer simulations of, at best, weakly turbulent convection in rotating constant-density fluid spheres. However, these experiments and simulations are poor approximations for the density-stratified strongly-turbulent interiors of giant planets. The long thin global convective columns predicted by the classic geostrophic theory for these planets would likely not develop. Here we propose a much more robust mechanism for maintaining differential rotation in radius based on the local generation of vorticity as rising plumes expand and sinking plumes contract. Our high-resolution two-dimensional computer simulations demonstrate how this mechanism could maintain either prograde or retrograde surface winds in the equatorial region of a giant planet depending on how the density scale height varies with depth.Comment: Geophysical and Astrophysical Fluid Dynamics, in pres

    Morphological peculiarities of a harbour seal (Phoca vitulina) whisker revealed by normal skeletonisation.

    Get PDF
    Of all mammalian vibrissae, those of certain species of pinnipeds are exceptional. Researchers believe that their curious undulating form evolved for hydrodynamic detection. Our understanding of how these whiskers work depends on a geometrical model that captures the crucial pertinent features of the natural vibrissae including its tapering and curvature. It should also account for the form of the whisker when it flexes under external loading. We introduce and study a normal skeleton of a two-dimensional projection of a harbour seal whisker. The normal skeleton is a complete shape descriptor that involves reduction to the centreline equipped with a thickness function of the orthogonal cross-section. The contours of the whisker shape are extracted from a 2D greyscale scan. Our analysis reveals correspondence between the undulations of the width and oscillations of the centreline curvature as functions of arc length. We discuss two possible explanations for that remarkable feature: one based on consideration of growth and the other of plastic deformation. For the latter we employ a mechanical model to demonstrate appearance of curvature oscillations caused by extensive deflection of the undulating whisker due to external loading

    Engineering tyrosine electron transfer pathways decreases oxidative toxicity in hemoglobin: implications for blood substitute design

    Get PDF
    Hemoglobin (Hb)-based oxygen carriers (HBOC) have been engineered to replace or augment the oxygen-carrying capacity of erythrocytes. However, clinical results have generally been disappointing due to adverse side effects linked to intrinsic heme-mediated oxidative toxicity and nitric oxide (NO) scavenging. Redox-active tyrosine residues can facilitate electron transfer between endogenous antioxidants and oxidative ferryl heme species. A suitable residue is present in the α-subunit (Y42) of Hb, but absent from the homologous position in the β-subunit (F41). We therefore replaced this residue with a tyrosine (βF41Y, Hb Mequon). The βF41Y mutation had no effect on the intrinsic rate of lipid peroxidation as measured by conjugated diene and singlet oxygen formation following the addition of ferric(met) Hb to liposomes. However, βF41Y significantly decreased these rates in the presence of physiological levels of ascorbate. Additionally, heme damage in the β-subunit following the addition of the lipid peroxide hydroperoxyoctadecadieoic acid was five-fold slower in βF41Y. NO bioavailability was enhanced in βF41Y by a combination of a 20% decrease in NO dioxygenase activity and a doubling of the rate of nitrite reductase activity. The intrinsic rate of heme loss from methemoglobin was doubled in the β-subunit, but unchanged in the α-subunit. We conclude that the addition of a redox-active tyrosine mutation in Hb able to transfer electrons from plasma antioxidants decreases heme-mediated oxidative reactivity and enhances NO bioavailability. This class of mutations has the potential to decrease adverse side effects as one component of a HBOC product.</jats:p

    Valley-spin blockade and spin resonance in carbon nanotubes

    Full text link
    Manipulation and readout of spin qubits in quantum dots made in III-V materials successfully rely on Pauli blockade that forbids transitions between spin-triplet and spin-singlet states. Quantum dots in group IV materials have the advantage of avoiding decoherence from the hyperfine interaction by purifying them with only zero-spin nuclei. Complications of group IV materials arise from the valley degeneracies in the electronic bandstructure. These lead to complicated multiplet states even for two-electron quantum dots thereby significantly weakening the selection rules for Pauli blockade. Only recently have spin qubits been realized in silicon devices where the valley degeneracy is lifted by strain and spatial confinement. In carbon nanotubes Pauli blockade can be observed by lifting valley degeneracy through disorder. In clean nanotubes, quantum dots have to be made ultra-small to obtain a large energy difference between the relevant multiplet states. Here we report on low-disorder nanotubes and demonstrate Pauli blockade based on both valley and spin selection rules. We exploit the bandgap of the nanotube to obtain a large level spacing and thereby a robust blockade. Single-electron spin resonance is detected using the blockade.Comment: 31 pages including supplementary informatio

    Interleukin-1 regulates multiple atherogenic mechanisms in response to fat feeding

    Get PDF
    Background: Atherosclerosis is an inflammatory process that develops in individuals with known risk factors that include hypertension and hyperlipidaemia, influenced by diet. However, the interplay between diet, inflammatory mechanisms and vascular risk factors requires further research. We hypothesised that interleukin-1 (IL-1) signaling in the vessel wall would raise arterial blood pressure and promote atheroma. Methodology/Principal Findings: Apoe(-/-) and Apoe(-/-)/IL-1R1(-/-) mice were fed high fat diets for 8 weeks, and their blood pressure and atherosclerosis development measured. Apoe(-/-)/IL-R1(-/-) mice had a reduced blood pressure and significantly less atheroma than Apoe(-/-) mice. Selective loss of IL-1 signaling in the vessel wall by bone marrow transplantation also reduced plaque burden (p<0.05). This was associated with an IL-1 mediated loss of endothelium-dependent relaxation and an increase in vessel wall Nox 4. Inhibition of IL-1 restored endothelium-dependent vasodilatation and reduced levels of arterial oxidative stress. Conclusions/Significance: The IL-1 cytokine system links atherogenic environmental stimuli with arterial inflammation, oxidative stress, increased blood pressure and atherosclerosis. This is the first demonstration that inhibition of a single cytokine can block the rise in blood pressure in response to an environmental stimulus. IL-1 inhibition may have profound beneficial effects on atherogenesis in man

    Controlled depolymerisation, as assessed by analytical ultracentrifugation, of low molecular weight chitosan for potential use in archaeological conservation

    Get PDF
    The heterogeneity and molecular weight of a chitosan of low molecular weight (molar mass) and low degree of acetylation (0.1), for potential use as a consolidant for decayed archaeological wood, has been examined by sedimentation velocity and sedimentation equilibriumin the analytical ultracentrifuge before and after depolymerisation. Sedimentation velocity before polymerisation revealed a uniform distribution of sedimentation coefficient with little concentration dependence. SEDFIT-MSTAR analysis revealed a weight average molecular weight Mw of (14.2 + 1.2) kDa, and polydispersity index of ~ 1.2. Further analysis using MULTISIG revealed a distribution of material between 2-20 kDa and consistent with the weight average Mw. Controlled depolymerisation using hydrogen peroxide and UV in an acetic acid medium reduced this to (4.9 + 0.7) kDa, with a similar polydispersity. The depolymerised material appears to be within the range that has been predicted to fully penetrate into archaeological wood. The consequences for this and the use of the analytical ultracentrifuge in wood conservation strategies is considered

    The impact of population heterogeneity on risk estimation in genetic counseling

    Get PDF
    BACKGROUND: Genetic counseling has been an important tool for evaluating and communicating disease susceptibility for decades, and it has been applied to predict risks for a wide class of hereditary disorders. Most diseases are complex in nature and are affected by multiple genes and environmental conditions; it is highly likely that DNA tests alone do not define all the genetic factors responsible for a disease, so that persons classified into the same risk group by DNA testing actually could have different disease susceptibilities. Ignorance of population heterogeneity may lead to biased risk estimates, whereas additional information on population heterogeneity may improve the precision of such estimates. METHODS: Although DNA tests are widely used, few studies have investigated the accuracy of the predicted risks. We examined the impact of population heterogeneity on predicted disease risks by simulation of three different heterogeneity scenarios and studied the precision and accuracy of the risks estimated from a logistic regression model that ignored population heterogeneity. Moreover, we also incorporated information about population heterogeneity into our original model and investigated the resulting improvement in the accuracy of risk estimation. RESULTS: We found that heterogeneity in one or more categories could lead to biased estimates not only in the "contaminated" categories but also in other homogeneous categories. Incorporating information about population heterogeneity into the original model greatly improved the accuracy of risk estimation. CONCLUSIONS: Our findings imply that without thorough knowledge about genetic basis of the disease, risks estimated from DNA tests may be misleading. Caution should be taken when evaluating the predicted risks obtained from genetic counseling. On the other hand, the improved accuracy of risk estimates after incorporating population heterogeneity information into the model did point out a promising direction for genetic counseling, since more and more new techniques are being invented and disease etiology is being better understood
    corecore