238 research outputs found

    Reionization: Characteristic Scales, Topology and Observability

    Full text link
    Recently the numerical simulations of the process of reionization of the universe at z>6 have made a qualitative leap forward, reaching sufficient sizes and dynamic range to determine the characteristic scales of this process. This allowed making the first realistic predictions for a variety of observational signatures. We discuss recent results from large-scale radiative transfer and structure formation simulations on the observability of high-redshift Ly-alpha sources. We also briefly discuss the dependence of the characteristic scales and topology of the ionized and neutral patches on the reionization parameters.Comment: 4 pages, 5 figures (4 in color), to appear in Astronomy and Space Science special issue "Space Astronomy: The UV window to the Universe", proceedings of 1st NUVA Conference ``Space Astronomy: The UV window to the Universe'' in El Escorial (Spain

    Performance of the Electromagnetic Calorimeter of the HERMES Experiment

    Get PDF
    The performance of the electromagnetic calorimeter of the HERMES experiment is described. The calorimeter consists of 840 radiation resistant F101 lead-glass counters. The response to positrons up to 27.5 GeV, the comparison between the measured energy and the momentum reconstructed from tracking, long-term stability, hadron rejection and neutral meson invariant mass reconstruction are shown.Comment: 22 pages, 13 figures, LaTeX, accepted by NI

    Self-Consistency and Calibration of Cluster Number Count Surveys for Dark Energy

    Full text link
    Cluster number counts offer sensitive probes of the dark energy if and only if the_evolution_ of the cluster mass versus observable relation(s) is well calibrated. We investigate the potential for internal calibration by demanding consistency in the counts as a function of the observable. In the context of a constant dark energy equation of state, known initial fluctuation amplitude expected from the CMB, universal underlying mass function, and an idealized selection, we find that the ambiguity from the normalization of the mass-observable relationships, or an extrapolation of external mass-observable determinations from higher masses, can be largely eliminated with a sufficiently deep survey, even allowing for an arbitrary evolution. More generally, number counts as a function of both the redshift and the observable enable strong consistency tests on assumptions made in modelling the mass-observable relations and cosmology.Comment: 4 pages, 3 figures, submitted to PRD rapid communication

    Quintessence Cosmology and the Cosmic Coincidence

    Get PDF
    Within present constraints on the observed smooth energy and its equation of state parameter, it is important to find out whether the smooth energy is static (cosmological constant) or dynamic (quintessence). The most dynamical quintessence fields observationally allowed are now still fast-rolling and no longer satisfy the tracker approximation if the equation of state parameter varies moderately with cosmic scale. We are optimistic about distinguishing between a cosmological constant and appreciably dynamic quintessence, by measuring average values for the effective equation of state parameter. However, reconstructing the quintessence potential from observations of any scale dependence appears problematic in the near future. For our flat universe, at present dominated by smooth energy in the form of either a cosmological constant (LCDM) or quintessence (QCDM), we calculate the asymptotic collapsed mass fraction to be maximal at the observed smooth energy/matter ratio. Identifying this collapsed fraction as a conditional probability for habitable galaxies, we infer that the prior distribution is flat. Interpreting this prior as a distribution over theories, rather than as a distribution over unobservable subuniverses, leads us to heuristic predictions about the class of future quantum cosmology theories and the static or quasi-static nature of the smooth energy.Comment: Typos corrected, as presented at Cosmo-01 Workshop, Rovaniemi, Finland and accepted for publication in Physical Review D. 9 pages, 4 figure

    Probing Primordial Non-Gaussianity with Large-Scale Structure

    Full text link
    We consider primordial non-Gaussianity due to quadratic corrections in the gravitational potential parametrized by a non-linear coupling parameter fnl. We study constraints on fnl from measurements of the galaxy bispectrum in redshift surveys. Using estimates for idealized survey geometries of the 2dF and SDSS surveys and realistic ones from SDSS mock catalogs, we show that it is possible to probe |fnl|~100, after marginalization over bias parameters. We apply our methods to the galaxy bispectrum measured from the PSCz survey, and obtain a 2sigma-constraint |fnl|< 1800. We estimate that an all sky redshift survey up to z~1 can probe |fnl|~1. We also consider the use of cluster abundance to constrain fnl and find that in order to be sensitive to |fnl|~100, cluster masses need to be determined with an accuracy of a few percent, assuming perfect knowledge of the mass function and cosmological parameters.Comment: 15 pages, 7 figure

    The Cosmic Microwave Background in an Inhomogeneous Universe - why void models of dark energy are only weakly constrained by the CMB

    Full text link
    The dimming of Type Ia supernovae could be the result of Hubble-scale inhomogeneity in the matter and spatial curvature, rather than signaling the presence of a dark energy component. A key challenge for such models is to fit the detailed spectrum of the cosmic microwave background (CMB). We present a detailed discussion of the small-scale CMB in an inhomogeneous universe, focusing on spherically symmetric `void' models. We allow for the dynamical effects of radiation while analyzing the problem, in contrast to other work which inadvertently fine tunes its spatial profile. This is a surprisingly important effect and we reach substantially different conclusions. Models which are open at CMB distances fit the CMB power spectrum without fine tuning; these models also fit the supernovae and local Hubble rate data which favours a high expansion rate. Asymptotically flat models may fit the CMB, but require some extra assumptions. We argue that a full treatment of the radiation in these models is necessary if we are to understand the correct constraints from the CMB, as well as other observations which rely on it, such as spectral distortions of the black body spectrum, the kinematic Sunyaev-Zeldovich effect or the Baryon Acoustic Oscillations.Comment: 23 pages with 14 figures. v2 has considerably extended discussion and analysis, but the basic results are unchanged. v3 is the final versio

    Developments in Structuring of Reformed Theology:The Synopsis Purioris Theologiae (1625) as Example

    Get PDF
    The Synopsis Purioris Theologiae (1625), an influential handbook of Reformeddogmatics, began as a cycle of disputations. A comparison of it with the cyclesthat were held previously in Leiden reveals some shifts in the structure of Reformeddogmatics. After introducing the Synopsis, this paper highlights thefunction of prolegomena, the place of predestination, and the relationship betweenthe magistrate and eschatology. It concludes that the choices made in theSynopsis illustrate tensions in Reformed theology. After the conflict with theRemonstrants it became urgent to carefully define the character of theology inthe prolegomena, to relate predestination to the person and work of Christ, andto connect the task of the magistrate to the doctrine of the church

    Cosmological parameters from Galaxy Clusters: an Introduction

    Full text link
    This lecture is an introduction to cosmological tests with clusters of galaxies. Here I do not intend to provide a complete review of the subject, but rather to describe the basic procedures to set up the fitting machinery to constrain cosmological parameters from clusters, and to show how to handle data with a critical insight. I will focus mainly on the properties of X-ray clusters of galaxies, showing their success as cosmological tools, to end up discussing the complex thermodynamics of the diffuse intracluster medium and its impact on the cosmological tests.Comment: 32 pages, 16 figures, conference proceedings for the 3rd Aegean Summer School, Chios, 26 September - 1 October, 200

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore