The dimming of Type Ia supernovae could be the result of Hubble-scale
inhomogeneity in the matter and spatial curvature, rather than signaling the
presence of a dark energy component. A key challenge for such models is to fit
the detailed spectrum of the cosmic microwave background (CMB). We present a
detailed discussion of the small-scale CMB in an inhomogeneous universe,
focusing on spherically symmetric `void' models. We allow for the dynamical
effects of radiation while analyzing the problem, in contrast to other work
which inadvertently fine tunes its spatial profile. This is a surprisingly
important effect and we reach substantially different conclusions. Models which
are open at CMB distances fit the CMB power spectrum without fine tuning; these
models also fit the supernovae and local Hubble rate data which favours a high
expansion rate. Asymptotically flat models may fit the CMB, but require some
extra assumptions. We argue that a full treatment of the radiation in these
models is necessary if we are to understand the correct constraints from the
CMB, as well as other observations which rely on it, such as spectral
distortions of the black body spectrum, the kinematic Sunyaev-Zeldovich effect
or the Baryon Acoustic Oscillations.Comment: 23 pages with 14 figures. v2 has considerably extended discussion and
analysis, but the basic results are unchanged. v3 is the final versio