11 research outputs found

    Elective surgery system strengthening: development, measurement, and validation of the surgical preparedness index across 1632 hospitals in 119 countries

    Get PDF
    Background The 2015 Lancet Commission on global surgery identified surgery and anaesthesia as indispensable parts of holistic health-care systems. However, COVID-19 exposed the fragility of planned surgical services around the world, which have also been neglected in pandemic recovery planning. This study aimed to develop and validate a novel index to support local elective surgical system strengthening and address growing backlogs. Methods First, we performed an international consultation through a four-stage consensus process to develop a multidomain index for hospital-level assessment (surgical preparedness index; SPI). Second, we measured surgical preparedness across a global network of hospitals in high-income countries (HICs), middle-income countries (MICs), and low-income countries (LICs) to explore the distribution of the SPI at national, subnational, and hospital levels. Finally, using COVID-19 as an example of an external system shock, we compared hospitals' SPI to their planned surgical volume ratio (SVR; ie, operations for which the decision for surgery was made before hospital admission), calculated as the ratio of the observed surgical volume over a 1-month assessment period between June 6 and Aug 5, 2021, against the expected surgical volume based on hospital administrative data from the same period in 2019 (ie, a pre-pandemic baseline). A linear mixed-effects regression model was used to determine the effect of increasing SPI score. Findings In the first phase, from a longlist of 103 candidate indicators, 23 were prioritised as core indicators of elective surgical system preparedness by 69 clinicians (23 [33%] women; 46 [67%] men; 41 from HICs, 22 from MICs, and six from LICs) from 32 countries. The multidomain SPI included 11 indicators on facilities and consumables, two on staffing, two on prioritisation, and eight on systems. Hospitals were scored from 23 (least prepared) to 115 points (most prepared). In the second phase, surgical preparedness was measured in 1632 hospitals by 4714 clinicians from 119 countries. 745 (45·6%) of 1632 hospitals were in MICs or LICs. The mean SPI score was 84·5 (95% CI 84·1–84·9), which varied between HIC (88·5 [89·0–88·0]), MIC (81·8 [82·5–81·1]), and LIC (66·8 [64·9–68·7]) settings. In the third phase, 1217 (74·6%) hospitals did not maintain their expected SVR during the COVID-19 pandemic, of which 625 (51·4%) were from HIC, 538 (44·2%) from MIC, and 54 (4·4%) from LIC settings. In the mixed-effects model, a 10-point increase in SPI corresponded to a 3·6% (95% CI 3·0–4·1; p<0·0001) increase in SVR. This was consistent in HIC (4·8% [4·1–5·5]; p<0·0001), MIC (2·8 [2·0–3·7]; p<0·0001), and LIC (3·8 [1·3–6·7%]; p<0·0001) settings. Interpretation The SPI contains 23 indicators that are globally applicable, relevant across different system stressors, vary at a subnational level, and are collectable by front-line teams. In the case study of COVID-19, a higher SPI was associated with an increased planned surgical volume ratio independent of country income status, COVID-19 burden, and hospital type. Hospitals should perform annual self-assessment of their surgical preparedness to identify areas that can be improved, create resilience in local surgical systems, and upscale capacity to address elective surgery backlogs. Funding National Institute for Health Research (NIHR) Global Health Research Unit on Global Surgery, NIHR Academy, Association of Coloproctology of Great Britain and Ireland, Bowel Research UK, British Association of Surgical Oncology, British Gynaecological Cancer Society, and Medtronic.publishedVersio

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective surgery system strengthening : development, measurement, and validation of the surgical preparedness index across 1632 hospitals in 119 countries

    No full text

    Elective surgery system strengthening: development, measurement, and validation of the surgical preparedness index across 1632 hospitals in 119 countries.

    Get PDF
    BACKGROUND: The 2015 Lancet Commission on global surgery identified surgery and anaesthesia as indispensable parts of holistic health-care systems. However, COVID-19 exposed the fragility of planned surgical services around the world, which have also been neglected in pandemic recovery planning. This study aimed to develop and validate a novel index to support local elective surgical system strengthening and address growing backlogs. METHODS: First, we performed an international consultation through a four-stage consensus process to develop a multidomain index for hospital-level assessment (surgical preparedness index; SPI). Second, we measured surgical preparedness across a global network of hospitals in high-income countries (HICs), middle-income countries (MICs), and low-income countries (LICs) to explore the distribution of the SPI at national, subnational, and hospital levels. Finally, using COVID-19 as an example of an external system shock, we compared hospitals' SPI to their planned surgical volume ratio (SVR; ie, operations for which the decision for surgery was made before hospital admission), calculated as the ratio of the observed surgical volume over a 1-month assessment period between June 6 and Aug 5, 2021, against the expected surgical volume based on hospital administrative data from the same period in 2019 (ie, a pre-pandemic baseline). A linear mixed-effects regression model was used to determine the effect of increasing SPI score. FINDINGS: In the first phase, from a longlist of 103 candidate indicators, 23 were prioritised as core indicators of elective surgical system preparedness by 69 clinicians (23 [33%] women; 46 [67%] men; 41 from HICs, 22 from MICs, and six from LICs) from 32 countries. The multidomain SPI included 11 indicators on facilities and consumables, two on staffing, two on prioritisation, and eight on systems. Hospitals were scored from 23 (least prepared) to 115 points (most prepared). In the second phase, surgical preparedness was measured in 1632 hospitals by 4714 clinicians from 119 countries. 745 (45·6%) of 1632 hospitals were in MICs or LICs. The mean SPI score was 84·5 (95% CI 84·1-84·9), which varied between HIC (88·5 [89·0-88·0]), MIC (81·8 [82·5-81·1]), and LIC (66·8 [64·9-68·7]) settings. In the third phase, 1217 (74·6%) hospitals did not maintain their expected SVR during the COVID-19 pandemic, of which 625 (51·4%) were from HIC, 538 (44·2%) from MIC, and 54 (4·4%) from LIC settings. In the mixed-effects model, a 10-point increase in SPI corresponded to a 3·6% (95% CI 3·0-4·1; p<0·0001) increase in SVR. This was consistent in HIC (4·8% [4·1-5·5]; p<0·0001), MIC (2·8 [2·0-3·7]; p<0·0001), and LIC (3·8 [1·3-6·7%]; p<0·0001) settings. INTERPRETATION: The SPI contains 23 indicators that are globally applicable, relevant across different system stressors, vary at a subnational level, and are collectable by front-line teams. In the case study of COVID-19, a higher SPI was associated with an increased planned surgical volume ratio independent of country income status, COVID-19 burden, and hospital type. Hospitals should perform annual self-assessment of their surgical preparedness to identify areas that can be improved, create resilience in local surgical systems, and upscale capacity to address elective surgery backlogs. FUNDING: National Institute for Health Research (NIHR) Global Health Research Unit on Global Surgery, NIHR Academy, Association of Coloproctology of Great Britain and Ireland, Bowel Research UK, British Association of Surgical Oncology, British Gynaecological Cancer Society, and Medtronic

    Elective surgery system strengthening: development, measurement, and validation of the surgical preparedness index across 1632 hospitals in 119 countries

    No full text
    Abstract Background: The 2015 Lancet Commission on global surgery identified surgery and anaesthesia as indispensable parts of holistic health-care systems. However, COVID-19 exposed the fragility of planned surgical services around the world, which have also been neglected in pandemic recovery planning. This study aimed to develop and validate a novel index to support local elective surgical system strengthening and address growing backlogs. Methods: First, we performed an international consultation through a four-stage consensus process to develop a multidomain index for hospital-level assessment (surgical preparedness index; SPI). Second, we measured surgical preparedness across a global network of hospitals in high-income countries (HICs), middle-income countries (MICs), and low-income countries (LICs) to explore the distribution of the SPI at national, subnational, and hospital levels. Finally, using COVID-19 as an example of an external system shock, we compared hospitals’ SPI to their planned surgical volume ratio (SVR; ie, operations for which the decision for surgery was made before hospital admission), calculated as the ratio of the observed surgical volume over a 1-month assessment period between June 6 and Aug 5,2021, against the expected surgical volume based on hospital administrative data from the same period in 2019 (ie, a pre-pandemic baseline). A linear mixed-effects regression model was used to determine the effect of increasing SPI score. Findings: In the first phase, from a longlist of 103 candidate indicators, 23 were prioritised as core indicators of elective surgical system preparedness by 69 dinicians (23133%) women; 46 [67%] men; 41 from HICs, 22 from MICs, and six from LICs) from 32 countries. The multidomain SPI included 11 indicators on facilities and consumables, two on staffing, two on prioritisation, and eight on systems. Hospitals were scored from 23 (least prepared) to 115 points (most prepared). In the second phase, surgical preparedness was measured in 1632 hospitals by 4714 clinicians from 119 countries. 745 (45.6%) of 1632 hospitals were in MICs or LICs. The mean SPI score was 84.5 (95% CI 84.1‐84.9), which varied between HIC (88.5 189.0‐88.0]), MIC (81.8 [82.5‐81.1]), and LIC (66.8 [64.9‐68.7]) settings. In the third phase, 1217 (74.6%) hospitals did not maintain their expected SVR during the COVID-19 pandemic, of which 625 (51.4%) were from HIC, 538 (44.2%) from MIC, and 54 (4.4%) from LIC settings. In the mixed-effects model, a 10-point increase in SPI corresponded to a 3.6% (95% CI 3.0‐4.1; p&lt;0.0001) increase in SVR. This was consistent in HIC (4.8% [4.1‐5.5]; p&lt;0.0001), MIC (2.8 [2.0‐3.7]; p&lt;0.0001), and LIC (3.8 [1.3‐6.7%]; p&lt;0.0001) settings. Interpretation: The SPI contains 23 indicators that are globally applicable, relevant across different system stressors, vary at a subnational level, and are collectable by front-line teams. In the case study of COVID-19, a higher SPI was associated with an increased planned surgical volume ratio independent of country income status, COVID-19 burden, and hospital type. Hospitals should perform annual self-assessment of their surgical preparedness to identify areas that can be improved, create resilience in local surgical systems, and upscale capacity to address elective surgery backlogs

    Colorectal Endoscopic Stenting Trial (CReST) for obstructing left-sided colorectal cancer: randomized clinical trial

    No full text
    Background Colorectal cancer often presents with obstruction needing urgent, potentially life-saving decompression. The comparative efficacy and safety of endoluminal stenting versus emergency surgery as initial treatment for such patients is uncertain. Methods Patients with left-sided colonic obstruction and radiological features of carcinoma were randomized to endoluminal stenting using a combined endoscopic/fluoroscopic technique followed by elective surgery 1–4 weeks later, or surgical decompression with or without tumour resection. Treatment allocation was via a central randomization service using a minimization procedure stratified by curative intent, primary tumour site, and severity score (Acute Physiology And Chronic Health Evaluation). Co-primary outcome measures were duration of hospital stay and 30-day mortality. Secondary outcomes were stoma formation, stenting completion and complication rates, perioperative morbidity, 6-month survival, 3-year recurrence, resource use, adherence to chemotherapy, and quality of life. Analyses were undertaken by intention to treat. Results Between 23 April 2009 and 22 December 2014, 245 patients from 39 hospitals were randomized. Stenting was attempted in 119 of 123 allocated patients (96.7 per cent), achieving relief of obstruction in 98 of 119 (82.4 per cent). For the 89 per cent treated with curative intent, there were no significant differences in 30-day postoperative mortality (3.6 per cent (4 of 110) versus 5.6 per cent (6 of 107); P = 0.48), or duration of hospital stay (median 19 (i.q.r. 11–34) versus 18 (10–28) days; P = 0.94) between stenting followed by delayed elective surgery and emergency surgery. Among patients undergoing potentially curative treatment, stoma formation occurred less frequently in those allocated to stenting than those allocated to immediate surgery (47 of 99 (47.5 per cent) versus 72 of 106 (67.9 per cent); P = 0.003). There were no significant differences in perioperative morbidity, critical care use, quality of life, 3-year recurrence or mortality between treatment groups. Conclusion Stenting as a bridge to surgery reduces stoma formation without detrimental effects. Registration number: ISRCTN13846816 (http://www.controlled-trials.com)

    Delaying surgery for patients with a previous SARS-CoV-2 infection

    Get PDF
    Not availabl

    Preoperative nasopharyngeal swab testing and postoperative pulmonary complications in patients undergoing elective surgery during the SARS-CoV-2 pandemic.

    Get PDF
    BACKGROUND: Surgical services are preparing to scale up in areas affected by COVID-19. This study aimed to evaluate the association between preoperative SARS-CoV-2 testing and postoperative pulmonary complications in patients undergoing elective cancer surgery. METHODS: This international cohort study included adult patients undergoing elective surgery for cancer in areas affected by SARS-CoV-2 up to 19 April 2020. Patients suspected of SARS-CoV-2 infection before operation were excluded. The primary outcome measure was postoperative pulmonary complications at 30 days after surgery. Preoperative testing strategies were adjusted for confounding using mixed-effects models. RESULTS: Of 8784 patients (432 hospitals, 53 countries), 2303 patients (26.2 per cent) underwent preoperative testing: 1458 (16.6 per cent) had a swab test, 521 (5.9 per cent) CT only, and 324 (3.7 per cent) swab and CT. Pulmonary complications occurred in 3.9 per cent, whereas SARS-CoV-2 infection was confirmed in 2.6 per cent. After risk adjustment, having at least one negative preoperative nasopharyngeal swab test (adjusted odds ratio 0.68, 95 per cent confidence interval 0.68 to 0.98; P = 0.040) was associated with a lower rate of pulmonary complications. Swab testing was beneficial before major surgery and in areas with a high 14-day SARS-CoV-2 case notification rate, but not before minor surgery or in low-risk areas. To prevent one pulmonary complication, the number needed to swab test before major or minor surgery was 18 and 48 respectively in high-risk areas, and 73 and 387 in low-risk areas. CONCLUSION: Preoperative nasopharyngeal swab testing was beneficial before major surgery and in high SARS-CoV-2 risk areas. There was no proven benefit of swab testing before minor surgery in low-risk areas
    corecore