30 research outputs found

    QCD corrections to the electric dipole moment of the neutron in the MSSM

    Full text link
    We consider the QCD corrections to the electric dipole moment of the neutron in the Minimal Supersymmetric Standard Model. We provide a master formula for the Wilson coefficients at the low energy scale including for the first time the mixing between the electric and chromoelectric operators and correcting widely used previous LO estimates. We show that, because of the mixing between the electric and chromoelectric operators, the neutralino contribution is always strongly suppressed. We find that, in general, the effect of the QCD corrections is to reduce the amount of CP violation generated at the high scale. We discuss the perturbative uncertainties of the LO computation, which are particularly large for the gluino-mediated contribution. This motivates our Next-to-Leading order analysis. We compute for the first time the order alpha_s corrections to the Wilson coefficients for the gluino contributions, and recompute the two-loop anomalous dimension for the dipole operators. We show that the large LO uncertainty disappears once NLO corrections are taken into account.Comment: 23 pages, 5 figures, added references, corrected typo

    On Partial Compositeness and the CP asymmetry in charm decays

    Full text link
    Recently, the LHCb and CDF collaborations reported the measure of an unexpectedly large direct CP asymmetry in D meson decays. In this paper we ask if new physics associated with Partial Compositeness could plausibly explain this result. We find that Composite Higgs models with mass scale around 10 TeV can account for it, while marginally satisfying all other flavor constraints in the quark sector. The minimal framework is however inadequate in the lepton sector due to the strong constraint from \mu\ to e \gamma. This tension can be efficiently alleviated by realizing Partial Compositeness within Supersymmetry. The resulting models can saturate the CP asymmetry in D decays for superpartner masses close to the TeV scale and somewhat large A-terms. The supersymmetric realization of Partial Compositeness also offers a predictive and phenomenologically viable organizing principle for R-Parity violation, and may result in very distinctive signatures at hadron colliders. With or without Supersymmetry, the neutron EDM is expected to be around the present experimental sensitivity.Comment: 35 pages, 2 tables, 3 figures. v2: published versio

    Effects of Large CP violating phases on g_{\m}-2 in MSSM

    Full text link
    Effects of CP violation on the supersymmetric electro-weak correction to the anomalous magnetic moment of the muon are investigated with the most general allowed set of CP violating phases in MSSM. The analysis includes contributions from the chargino and the neutralino exchanges to the muon anomaly. The supersymmetric contributions depend only on specific combinations of CP phases. The independent set of such phases is classified. We analyse the effects of the phases under the EDM constraints and show that large CP violating phases can drastically affect the magnitude of the supersymmetric electro-weak contribution to aμa_{\mu} and may even affect its overall sign.Comment: 26 pages Latex file including 4 figure

    Multifield Dynamics in Higgs-otic Inflation

    Full text link
    In Higgs-otic inflation a complex neutral scalar combination of the h0h^0 and H0H^0 MSSM Higgs fields plays the role of inflaton in a chaotic fashion. The potential is protected from large trans-Planckian corrections at large inflaton if the system is embedded in string theory so that the Higgs fields parametrize a D-brane position. The inflaton potential is then given by a DBI+CS D-brane action yielding an approximate linear behaviour at large field. The inflaton scalar potential is a 2-field model with specific non-canonical kinetic terms. Previous computations of the cosmological parameters (i.e. scalar and tensor perturbations) did not take into account the full 2-field character of the model, ignoring in particular the presence of isocurvature perturbations and their coupling to the adiabatic modes. It is well known that for generic 2-field potentials such effects may significantly alter the observational signatures of a given model. We perform a full analysis of adiabatic and isocurvature perturbations in the Higgs-otic 2-field model. We show that the predictivity of the model is increased compared to the adiabatic approximation. Isocurvature perturbations moderately feed back into adiabatic fluctuations. However, the isocurvature component is exponentially damped by the end of inflation. The tensor to scalar ratio varies in a region r=0.080.12r=0.08-0.12, consistent with combined Planck/BICEP results.Comment: 35 pages, 11 figure

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Il paesaggio sonoro

    No full text
    corecore