5,050 research outputs found
Heat flow from the Southeast Indian Ridge flanks between 80°E and 140°E: Data review and analysis
International audienceWe analyze available heat flow data from the flanks of the Southeast Indian Ridge adjacent to or within the Australian-Antarctic Discordance (AAD), an area with patchy sediment cover and highly fractured seafloor as dissected by ridge- and fracture-parallel faults. The data set includes 23 new data points collected along a 14-Ma old isochron and 19 existing measurements from the 20- to 24-Ma old crust. Most sites of measurements exhibit low heat flux (from 2 to 50 mW m−2) with near-linear temperature-depth profiles except at a few sites, where recent bottom water temperature change may have caused nonlinearity toward the sediment surface. Because the igneous basement is expected to outcrop a short distance away from any measurement site, we hypothesize that horizontally channelized water circulation within the uppermost crust is the primary process for the widespread low heat flow values. The process may be further influenced by vertical fluid flow along numerous fault zones that crisscross the AAD seafloor. Systematic measurements along and across the fault zones of interest as well as seismic profiling for sediment distribution are required to confirm this possible, suspected effect
Magnetoresistance of UPt3
We have performed measurements of the temperature dependence of the
magnetoresistance up to 9 T in bulk single crystals of UPt3 with the magnetic
field along the b axis, the easy magnetization axis. We have confirmed previous
results for transverse magnetoresistance with the current along the c axis, and
report measurements of the longitudinal magnetoresistance with the current
along the b axis. The presence of a linear term in both cases indicates broken
orientational symmetry associated with magnetic order. With the current along
the c axis the linear term appears near 5 K, increasing rapidly with decreasing
temperature. For current along the b axis the linear contribution is negative.Comment: 6 pages, 3 figures, submitted to Quantum Fluids and Solids Conference
(QFS 2006
Inactivation of Aconitase by Tetrahydrobiopterin in DArgic Cells: Relevance to PD
Oxidative damage is thought to be a major cause of the progression of dopamine (DA)rgic neurodegeneration as in Parkinson's disease. We have previously reported that tetrahydrobiopterin (BH4), an endogenous molecule required for DA synthesis, exerts oxidative stress to DA-producing cells and facilitates the production of DA quinone. It is known that aconitase, present in both mitochondrial and cytosolic forms, act as an reactive oxygen species (ROS) sensor, and that their inactivation leads to further generation of ROS. In the present study we investigated whether the BH4-associated vulnerability of DA cells might involve aconitase. In DArgic cell line CATH.a, BH4 treatment caused reduction of activity of both mitochondrial and cytosolic aconitases, and this appeared to be due to direct inactivation of the pre-existing enzyme molecules. Although most of the activity reduced by BH4 was increased upon reactivation reaction under a reducing condition, the restoration was not complete, suggesting that irreversible and covalent modification has occurred. The aconitase inactivation was exacerbated in the presence of DA and attenuated in the presence of tyrosine hydroxylase inhibitor a-methyl-p-tyrosine, suggesting the involvement of DA. The degree of inactivation increased when the cells were treated with the quinone reductase inhibitor dicoumarol and decreased in the presence of quinone reductase inducer sulforaphane. Taken together, BH4 appeared to lead to both reversible and irreversible inactivation of aconitase and that this is facilitated by the presence of DA and accumulation of DA quinone
Ferromagnetic phase transition and Bose-Einstein condensation in spinor Bose gases
Phase transitions in spinor Bose gases with ferromagnetic (FM) couplings are
studied via mean-field theory. We show that an infinitesimal value of the
coupling can induce a FM phase transition at a finite temperature always above
the critical temperature of Bose-Einstein condensation. This contrasts sharply
with the case of Fermi gases, in which the Stoner coupling can not lead
to a FM phase transition unless it is larger than a threshold value . The
FM coupling also increases the critical temperatures of both the ferromagnetic
transition and the Bose-Einstein condensation.Comment: 4 pages, 4 figure
Stereoselective synthesis of chiral β2,3-disubstituted-β-amino acid derivatives using Pd/In transmetallation cascade processes
A new, highly efficient synthesis of chiral β2,3-disubstituted-β-amino acid derivatives has been developed, based on an allylation procedure employing allene and a catalytic Pd/In bimetallic process
Mountain building in Taiwan: A thermokinematic model
The Taiwan mountain belt is classically viewed as a case example of a critical wedge growing essentially by frontal accretion and therefore submitted to distributed shortening. However, a number of observations call for a significant contribution of underplating to the growth of the orogenic wedge. We propose here a new thermokinematic model of the Taiwan mountain belt reconciling existing kinematic, thermometric and thermochronological constraints. In this model, shortening across the orogen is absorbed by slip on the most frontal faults of the foothills. Crustal thickening and exhumation are sustained by underplating beneath the easternmost portion of the wedge (Tananao Complex, TC), where the uplift rate is estimated to ~6.3 mm a^(−1), and beneath the westernmost internal region of the orogen (Hsueshan Range units, HR), where the uplift rate is estimated to ~4.2 mm a^(−1). Our model suggests that the TC units experienced a synchronous evolution along strike despite the southward propagation of the collision. It also indicates that they have reached a steady state in terms of cooling ages but not in terms of peak metamorphic temperatures. Exhumation of the HR units increases northward but has not yet reached an exhumational steady state. Presently, frontal accretion accounts for less than ~10% of the incoming flux of material into the orogen, although there is indication that it was contributing substantially more (~80%) before 4 Ma. The incoming flux of material accreted beneath the TC significantly increased 1.5 Ma ago. Our results also suggest that the flux of material accreted to the orogen corresponds to the top ~7 km of the upper crust of the underthrust Chinese margin. This indicates that a significant amount (~76%) of the underthrust material has been subducted into the mantle, probably because of the increase in density associated with metamorphism. We also show that the density distribution resulting from metamorphism within the orogenic wedge explains well the topography and the gravity field. By combining available geological data on the thermal and kinematic evolution of the wedge, our study sheds new light onto mountain building processes in Taiwan and allows for reappraising the initial structural architecture of the passive margin
Duality and scaling in 3-dimensional scalar electrodynamics
Three-dimensional scalar electrodynamics, with a local U(1) gauge symmetry,
is believed to be dual to a scalar theory with a global U(1) symmetry, near the
phase transition point. The conjectured duality leads to definite predictions
for the scaling exponents of the gauge theory transition in the type II region,
and allows thus to be scrutinized empirically. We review these predictions, and
carry out numerical lattice Monte Carlo measurements to test them: a number of
exponents, characterising the two phases as well as the transition point, are
found to agree with expectations, supporting the conjecture. We explain why
some others, like the exponent characterising the photon correlation length,
appear to disagree with expectations, unless very large system sizes and the
extreme vicinity of the transition point are considered. Finally, we remark
that in the type I region the duality implies an interesting quantitative
relationship between a magnetic flux tube and a 2-dimensional non-topological
soliton.Comment: 27 pages. v2: reference and minor clarifications added, to appear in
Nucl.Phys.
Bayesian non-linear large scale structure inference of the Sloan Digital Sky Survey data release 7
In this work we present the first non-linear, non-Gaussian full Bayesian
large scale structure analysis of the cosmic density field conducted so far.
The density inference is based on the Sloan Digital Sky Survey data release 7,
which covers the northern galactic cap. We employ a novel Bayesian sampling
algorithm, which enables us to explore the extremely high dimensional
non-Gaussian, non-linear log-normal Poissonian posterior of the three
dimensional density field conditional on the data. These techniques are
efficiently implemented in the HADES computer algorithm and permit the precise
recovery of poorly sampled objects and non-linear density fields. The
non-linear density inference is performed on a 750 Mpc cube with roughly 3 Mpc
grid-resolution, while accounting for systematic effects, introduced by survey
geometry and selection function of the SDSS, and the correct treatment of a
Poissonian shot noise contribution. Our high resolution results represent
remarkably well the cosmic web structure of the cosmic density field.
Filaments, voids and clusters are clearly visible. Further, we also conduct a
dynamical web classification, and estimated the web type posterior distribution
conditional on the SDSS data.Comment: 18 pages, 11 figure
- …