388 research outputs found

    Coordination between growth, phenology and carbon storage in three coexisting deciduous tree species in a temperate forest

    Get PDF
    In deciduous trees growing in temperate forests, bud break and growth in spring must rely on intrinsic carbon (C) reserves. Yet it is unclear whether growth and C storage occur simultaneously, and whether starch C in branches is sufficient for refoliation. To test in situ the relationships between growth, phenology and C utilization, we monitored stem growth, leaf phenology and stem and branch nonstructural carbohydrate (NSC) dynamics in three deciduous species: Carpinus betulus L., Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. To quantify the role of NSC in C investment into growth, a C balance approach was applied. Across the three species, >95% of branchlet starch was consumed during bud break, confirming the importance of C reserves for refoliation in spring. The C balance calculation showed that 90% of the C investment in foliage (7.0–10.5 kg tree −1 and 5–17 times the C needed for annual stem growth) was explained by simultaneous branchlet starch degradation. Carbon reserves were recovered sooner than expected, after leaf expansion, in parallel with stem growth. Carpinus had earlier leaf phenology (by ∼25 days) but delayed cambial growth (by ∼15 days) than Fagus and Quercus , the result of a competitive strategy to flush early, while having lower NSC levels

    Mayaro Virus in Wild Mammals, French Guiana

    Get PDF
    A serologic survey for Mayaro virus (Alphavirus, Togaviridae) in 28 wild nonflying forest mammal species in French Guiana showed a prevalence ranging from 0% to 52% and increasing with age. Species active during the day and those who spent time in trees were significantly more infected, results consistent with transmission implicating diurnal mosquitoes and continuous infectious pressure

    Botulinum Neurotoxin Devoid of Receptor Binding Domain Translocates Active Protease

    Get PDF
    Clostridium botulinum neurotoxin (BoNT) causes flaccid paralysis by disabling synaptic exocytosis. Intoxication requires the tri-modular protein to undergo conformational changes in response to pH and redox gradients across endosomes, leading to the formation of a protein-conducting channel. The ∼50 kDa light chain (LC) protease is translocated into the cytosol by the ∼100 kDa heavy chain (HC), which consists of two modules: the N-terminal translocation domain (TD) and the C-terminal Receptor Binding Domain (RBD). Here we exploited the BoNT modular design to identify the minimal requirements for channel activity and LC translocation in neurons. Using the combined detection of substrate proteolysis and single-channel currents, we showed that a di-modular protein consisting only of LC and TD was sufficient to translocate active protease into the cytosol of target cells. The RBD is dispensable for cell entry, channel activity, or LC translocation; however, it determined a pH threshold for channel formation. These findings indicate that, in addition to its individual functions, each module acts as a chaperone for the others, working in concert to achieve productive intoxication

    The Relative Importance of Clinical, Economic, Patient Values and Feasibility Criteria in Cancer Drug Reimbursement in Canada:A Revealed Preferences Analysis of Recommendations of the Pan-Canadian Oncology Drug Review 2011–2017

    Get PDF
    Background: Most Canadian provinces and territories rely on the pan-Canadian Oncology Drug Review (pCODR) to provide recommendations regarding public reimbursement of cancer drugs. The pCODR review process considers four dimensions of value—clinical benefit, economic evaluation, patient-based values and adoption feasibility—but they do not define weights for individual decision criteria or an acceptable threshold for any of the criteria. Given this implicit review process, it is of interest to understand which factors appear to carry the most weight in pCODR recommendations using a revealed preferences approach. Methods: Using publicly available decision summaries (n = 91) describing submissions and resulting recommendations 2011–2017, we extracted ten attributes that characterized each submission. Using logistic regression, we identified statistically significant attributes and estimated their relative impact in final recommendations. Results: Clinical aspects appear to carry the greatest weight in the decision to reject or not reject, along with aspects of patient value (treatments with no alternatives were less likely to be rejected). Cost effectiveness does not appear to play a role in the initial decision to reject or not reject but is critical in full versus conditional approvals. There is evidence of a maximum acceptable threshold of around $Can140,000 per quality-adjusted life-year (QALY) gained. Conclusion: A set of factors driving pCODR recommendations is identifiable, supporting the consistency of the review process. However, the implicit nature of the review process and the difficulty of extracting and interpreting some of the attribute levels used in the analysis suggests that the process may still lack full transparency

    Seasonal Dynamics of Mobile Carbon Supply in Quercus aquifolioides at the Upper Elevational Limit

    Get PDF
    Many studies have tried to explain the physiological mechanisms of the alpine treeline phenomenon, but the debate on the alpine treeline formation remains controversial due to opposite results from different studies. The present study explored the carbon-physiology of an alpine shrub species (Quercus aquifolioides) grown at its upper elevational limit compared to lower elevations, to test whether the elevational limit of alpine shrubs (<3 m in height) are determined by carbon limitation or growth limitation. We studied the seasonal variations in non-structural carbohydrate (NSC) and its pool size in Q. aquifolioides grown at 3000 m, 3500 m, and at its elevational limit of 3950 m above sea level (a.s.l.) on Zheduo Mt., SW China. The tissue NSC concentrations along the elevational gradient varied significantly with season, reflecting the season-dependent carbon balance. The NSC levels in tissues were lowest at the beginning of the growing season, indicating that plants used the winter reserve storage for re-growth in the early spring. During the growing season, plants grown at the elevational limit did not show lower NSC concentrations compared to plants at lower elevations, but during the winter season, storage tissues, especially roots, had significantly lower NSC concentrations in plants at the elevational limit compared to lower elevations. The present results suggest the significance of winter reserve in storage tissues, which may determine the winter survival and early-spring re-growth of Q. aquifolioides shrubs at high elevation, leading to the formation of the uppermost distribution limit. This result is consistent with a recent hypothesis for the alpine treeline formation

    Spin dynamics in semiconductors

    Full text link
    This article reviews the current status of spin dynamics in semiconductors which has achieved a lot of progress in the past years due to the fast growing field of semiconductor spintronics. The primary focus is the theoretical and experimental developments of spin relaxation and dephasing in both spin precession in time domain and spin diffusion and transport in spacial domain. A fully microscopic many-body investigation on spin dynamics based on the kinetic spin Bloch equation approach is reviewed comprehensively.Comment: a review article with 193 pages and 1103 references. To be published in Physics Reports

    Engineered method for directional growth of muscle sheets on electrospun fibers

    Get PDF
    Research on the neuromuscular junction (NMJ) and its function and development spans over a century. However, researchers are limited in their ability to conduct experimentation on this highly specialized synapse between motor neurons and muscle fibers, as NMJs are not easily accessible outside the body. The aim of this work is to provide a reliable and reproducible muscle sheet model for in vitro NMJ study. A novel culture system was designed by engineering a method for the directional growth of myofiber sheets, using muscle progenitor cells cultured on electrospun fiber networks. Myoblastic C2C12 cells cultured on suspended aligned fibers were found to maintain directionality, with alignment angle standard deviations approximately two-thirds lower on fibers than on regular culture surfaces. Morphological studies found nuclei and cytoskeleton aspect ratios to be elongated by 20% and 150%, respectively. Furthermore, neurons were shown to form innervation patterns parallel to suspended fibers when co-cultured on developed muscle sheets, with alignment angle standard deviations three times lower compared to those on typical surfaces. The effect of agrin on samples was quantified through the slow release of agrin medium, encapsulated in alginate pellets and imbedded within culture chambers. Samples exposed to agrin showed significantly increased percentage of AChR-covered area. The developed model has potential to serve as the basis for synaptogenesis and NMJ studies, providing a novel approach to bio-artificial muscle alignment and setting the groundwork for further investigations in innervation. This article is protected by copyright. All rights reserved
    • …
    corecore