358 research outputs found

    Efficient GNN Explanation via Learning Removal-based Attribution

    Full text link
    As Graph Neural Networks (GNNs) have been widely used in real-world applications, model explanations are required not only by users but also by legal regulations. However, simultaneously achieving high fidelity and low computational costs in generating explanations has been a challenge for current methods. In this work, we propose a framework of GNN explanation named LeArn Removal-based Attribution (LARA) to address this problem. Specifically, we introduce removal-based attribution and demonstrate its substantiated link to interpretability fidelity theoretically and experimentally. The explainer in LARA learns to generate removal-based attribution which enables providing explanations with high fidelity. A strategy of subgraph sampling is designed in LARA to improve the scalability of the training process. In the deployment, LARA can efficiently generate the explanation through a feed-forward pass. We benchmark our approach with other state-of-the-art GNN explanation methods on six datasets. Results highlight the effectiveness of our framework regarding both efficiency and fidelity. In particular, LARA is 3.5 times faster and achieves higher fidelity than the state-of-the-art method on the large dataset ogbn-arxiv (more than 160K nodes and 1M edges), showing its great potential in real-world applications. Our source code is available at https://anonymous.4open.science/r/LARA-10D8/README.md

    Lawyer LLaMA Technical Report

    Full text link
    Large Language Models (LLMs), like LLaMA, have exhibited remarkable performances across various tasks. Nevertheless, when deployed to specific domains such as law or medicine, the models still confront the challenge of a deficiency in domain-specific knowledge and an inadequate capability to leverage that knowledge to resolve domain-related problems. In this paper, we focus on the legal domain and explore how to inject domain knowledge during the continual training stage and how to design proper supervised finetune tasks to help the model tackle practical issues. Moreover, to alleviate the hallucination problem during model's generation, we add a retrieval module and extract relevant articles before the model answers any queries. Augmenting with the extracted evidence, our model could generate more reliable responses. We release our data and model at https://github.com/AndrewZhe/lawyer-llama.Comment: Work in progres

    ART/WORK: Labor, Identity, and Society

    Full text link
    Artists, perhaps to emphasize their own dedication to the intellectual and manual skills required for making art, have long been drawn to the theme of labor, both in their depictions of workers and scenes of making. In the late seventeenth century, Dutch paintings frequently portrayed earnest and diligent artisans performing trades at shops or on the streets. Later, rapid economic, social and political changes throughout Europe in the mid-nineteenth century led to a more radical approach to realist representations of labor. This exhibition ART/WORK: Labor, Identity, and Society considers these art-historical precedents to explore the issues of labor in art. More specifically, the student curators investigate the dynamic interplay between labor, gender, and race in the process of industrialization and social transition across various cultures in the late nineteenth and twentieth centuries. ART/WORK highlights thirteen works of art from Gettysburg College’s Fine Art Collection and Special Collections. Posters, prints, and photographs in this exhibition are not simply documents of people and tasks performed within their own particular histories and societies, but are presented as works of art by a diverse group of accomplished makers. [excerpt]https://cupola.gettysburg.edu/artcatalogs/1038/thumbnail.jp

    Insights into the mechanism of growth and fat deposition by feeding different levels of lipid provided by transcriptome analysis of swamp eel (Monopterus albus, Zuiew 1793) liver

    Get PDF
    Lipid is an important source of energy in fish feeds, and the appropriate fat content can improve the efficiency of protein utilization. However, excessive lipid content in the feed can lead to abnormal fat deposition in fish, which has a negative effect on the growth of fish. Therefore, the effects of feed lipid levels on swamp eel were studied. Essential functional genes were screened using transcriptomics. We divided 840 fish into seven groups (four replicates). A mixture of fish and soybean oils (1:4), 0%, 2%, 4%, 6%, 8%, 10%, and 12% was added to the basic feed were named groups one to seven (L1-L7), respectively. Isonitrogenous diets were fed swamp eel for 10 weeks. Growth performance, visceral index, nutritional components, and biochemical indexes were measured and analyzed. Livers of the 0%, 6%, and 12% groups were subjected to transcriptome sequencing analysis. The results of our study showed that: the suitable lipid level for the growth of swamp eel was 7.03%; the crude fat content of whole fish, liver, intestine, muscle, and skin increased with the increase of lipid level, with some significant difference, and excess fat was deposited in skin tissue; triglyceride, total cholesterol, and free fatty acid contents increased with the increase of feed lipid level. High-density lipoprotein levels in the L3 and L4 groups were higher than in the other groups. Blood glucose concentrations in the L5, L6, and L7 groups increased; the liver tissue structure was damaged when the lipid level was too high. two-hundred-and-twenty-eight differentially expressed genes were found. Several critical pathways regulating glucose metabolism and energy balance (e.g., glycerolipid metabolism, glycolysis synthesis, degradation of ketone bodies, and Janus Kinase/Signal Transducer and Activator of Transcription signaling pathway) were enriched in swamp eel compared with the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Suitable lipid levels (7.03%) can promote the growth of swamp eel, and excessive lipid levels can cause elevated blood lipids and lead to liver cell damage. Regulatory mechanisms may involve multiple metabolic pathways for glucose and lipid metabolism in eels. This study provides new insights to explain the mechanism of fat deposition due to high levels of lipid and provides a basis for the production of efficient and environmentally friendly feed for swamp eel

    MgF2_2 as an effective additive for improving ionic conductivity of ceramic solid electrolytes

    Full text link
    As typical solid-state electrolytes (SSEs), {Na}1+x_{1+x}{Zr}2_2{Si}x_{x}{P}3x_{3-x}{O}12_{12} NASICONs provide an ideal platform for solid-state batteries (SSBs) that display higher safety and accommodate higher energy densities. The critical points for achieving SSBs with higher efficiencies are to improve essentially the ionic conductivity and to reduce largely the interfacial resistance between SSEs and cathode materials, which would necessitate extremely high level of craftsmanship and high-pressure equipment. An alternative to higher-performance and lower-cost SSBs is additive manufacturing. Here, we report on an effective additive, MgF2_2, which was used in synthesizing NASICONs, resulting in SSEs with fewer defects and higher performance. With an addition of mere 1 wt%\% MgF2_2 additive, the total room-temperature ionic conductivity of the NASICON electrolyte reaches up to 2.03 mS cm1^{-1}, improved up to \sim 181.3%\%, with an activation energy of 0.277 eV. Meanwhile, the stability of the Na plating/stripping behavior in symmetric cells increases from 236 to 654 h. We tried to reveal the microscopic origins of the higher ionic conductivity of MgF2_2-doped NASICONs by comprehensive in-house characterizations. Our study discovers a novel MgF2_2 additive and provides an efficient way to prepare higher-performance SSEs, making it possible to fabricate lower-cost SSBs in industries.Comment: 16 pages, 7 figure

    Polypharmacology of Berberine Based on Multi-Target Binding Motifs

    Get PDF
    Background: Polypharmacology is emerging as the next paradigm in drug discovery. However, considerable challenges still exist for polypharmacology modeling. In this study, we developed a rational design to identify highly potential targets (HPTs) for polypharmacological drugs, such as berberine.Methods and Results: All the proven co-crystal structures locate berberine in the active cavities of a redundancy of aromatic, aliphatic, and acidic residues. The side chains from residues provide hydrophobic and electronic interactions to aid in neutralization for the positive charge of berberine. Accordingly, we generated multi-target binding motifs (MBM) for berberine, and established a new mathematical model to identify HPTs based on MBM. Remarkably, the berberine MBM was embodied in 13 HPTs, including beta-secretase 1 (BACE1) and amyloid-β1-42 (Aβ1-42). Further study indicated that berberine acted as a high-affinity BACE1 inhibitor and prevented Aβ1-42 aggregation to delay the pathological process of Alzheimer’s disease.Conclusion: Here, we proposed a MBM-based drug-target space model to analyze the underlying mechanism of multi-target drugs against polypharmacological profiles, and demonstrated the role of berberine in Alzheimer’s disease. This approach can be useful in derivation of rules, which will illuminate our understanding of drug action in diseases

    PaLM 2 Technical Report

    Full text link
    We introduce PaLM 2, a new state-of-the-art language model that has better multilingual and reasoning capabilities and is more compute-efficient than its predecessor PaLM. PaLM 2 is a Transformer-based model trained using a mixture of objectives. Through extensive evaluations on English and multilingual language, and reasoning tasks, we demonstrate that PaLM 2 has significantly improved quality on downstream tasks across different model sizes, while simultaneously exhibiting faster and more efficient inference compared to PaLM. This improved efficiency enables broader deployment while also allowing the model to respond faster, for a more natural pace of interaction. PaLM 2 demonstrates robust reasoning capabilities exemplified by large improvements over PaLM on BIG-Bench and other reasoning tasks. PaLM 2 exhibits stable performance on a suite of responsible AI evaluations, and enables inference-time control over toxicity without additional overhead or impact on other capabilities. Overall, PaLM 2 achieves state-of-the-art performance across a diverse set of tasks and capabilities. When discussing the PaLM 2 family, it is important to distinguish between pre-trained models (of various sizes), fine-tuned variants of these models, and the user-facing products that use these models. In particular, user-facing products typically include additional pre- and post-processing steps. Additionally, the underlying models may evolve over time. Therefore, one should not expect the performance of user-facing products to exactly match the results reported in this report

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore