439 research outputs found
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
A Novel Xenogeneic Co-Culture System to Examine Neuronal Differentiation Capability of Various Adult Human Stem Cells
Background: Targeted differentiation of stem cells is mainly achieved by the sequential administration of defined growth factors and cytokines, although these approaches are quite artificial, cost-intensive and time-consuming. We now present a simple xenogeneic rat brain co-culture system which supports neuronal differentiation of adult human stem cells under more in vivo-like conditions. Methods and Findings: This system was applied to well-characterized stem cell populations isolated from human skin, parotid gland and pancreas. In addition to general multi-lineage differentiation potential, these cells tend to differentiate spontaneously into neuronal cell types in vitro and are thus ideal candidates for the introduced co-culture system. Consequently, after two days of co-culture up to 12% of the cells showed neuronal morphology and expressed corresponding markers on the mRNA and protein level. Additionally, growth factors with the ability to induce neuronal different iation in stem cells could be found in the media supernatants of the co-cultures. Conclusions: The co-culture system described here is suitable for testing neuronal differentiation capability of numerous types of stem cells. Especially in the case of human cells, it may be of clinical relevance for future cell-based therapeutic applications
Learning to Learn: Theta Oscillations Predict New Learning, which Enhances Related Learning and Neurogenesis
Animals in the natural world continuously encounter learning experiences of varying degrees of novelty. New neurons in the hippocampus are especially responsive to learning associations between novel events and more cells survive if a novel and challenging task is learned. One might wonder whether new neurons would be rescued from death upon each new learning experience or whether there is an internal control system that limits the number of cells that are retained as a function of learning. In this experiment, it was hypothesized that learning a task that was similar in content to one already learned previously would not increase cell survival. We further hypothesized that in situations in which the cells are rescued hippocampal theta oscillations (3–12 Hz) would be involved and perhaps necessary for increasing cell survival. Both hypotheses were disproved. Adult male Sprague-Dawley rats were trained on two similar hippocampus-dependent tasks, trace and very-long delay eyeblink conditioning, while recording hippocampal local-field potentials. Cells that were generated after training on the first task were labeled with bromodeoxyuridine and quantified after training on both tasks had ceased. Spontaneous theta activity predicted performance on the first task and the conditioned stimulus induced a theta-band response early in learning the first task. As expected, performance on the first task correlated with performance on the second task. However, theta activity did not increase during training on the second task, even though more cells were present in animals that had learned. Therefore, as long as learning occurs, relatively small changes in the environment are sufficient to increase the number of surviving neurons in the adult hippocampus and they can do so in the absence of an increase in theta activity. In conclusion, these data argue against an upper limit on the number of neurons that can be rescued from death by learning
MRC chronic Dyspnea Scale: Relationships with cardiopulmonary exercise testing and 6-minute walk test in idiopathic pulmonary fibrosis patients: a prospective study
<p>Abstract</p> <p>Background</p> <p>Exertional dyspnea is the most prominent and disabling feature in idiopathic pulmonary fibrosis (IPF). The Medical Research Chronic (MRC) chronic dyspnea score as well as physiological measurements obtained during cardiopulmonary exercise testing (CPET) and the 6-minute walk test (6MWT) are shown to provide information on the severity and survival of disease.</p> <p>Methods</p> <p>We prospectively recruited IPF patients and examined the relationship between the MRC score and either CPET or 6MWT parameters known to reflect physiologic derangements limiting exercise capacity in IPF patients</p> <p>Results</p> <p>Twenty-five patients with IPF were included in the study. Significant correlations were found between the MRC score and the distance (r = -.781, p < 0.001), the SPO<sub>2 </sub>at the initiation and the end (r = -.542, p = 0.005 and r = -.713, p < 0.001 respectively) and the desaturation index (r = .634, p = 0.001) for the 6MWT; the MRC score and <it>V</it>O<sub>2 </sub>peak/kg (r = -.731, p < 0.001), SPO<sub>2 </sub>at peak exercise (r = -. 682, p < 0.001), VE/VCO<sub>2 </sub>slope (r = .731, p < 0.001), VE/VCO<sub>2 </sub>at AT (r = .630, p = 0.002) and the Borg scale at peak exercise (r = .50, p = 0.01) for the CPET. In multiple logistic regression analysis, the only variable independently related to the MRC is the distance walked at the 6MWT.</p> <p>Conclusion</p> <p>In this population of IPF patients a good correlation was found between the MRC chronic dyspnoea score and physiological parameters obtained during maximal and submaximal exercise testing known to reflect ventilatory impairment and exercise limitation as well as disease severity and survival. This finding is described for the first time in the literature in this group of patients as far as we know and could explain why a simple chronic dyspnea score provides reliable prognostic information on IPF.</p
What Can Causal Networks Tell Us about Metabolic Pathways?
Graphical models describe the linear correlation structure of data and have been used to establish causal relationships among phenotypes in genetic mapping populations. Data are typically collected at a single point in time. Biological processes on the other hand are often non-linear and display time varying dynamics. The extent to which graphical models can recapitulate the architecture of an underlying biological processes is not well understood. We consider metabolic networks with known stoichiometry to address the fundamental question: “What can causal networks tell us about metabolic pathways?”. Using data from an Arabidopsis BaySha population and simulated data from dynamic models of pathway motifs, we assess our ability to reconstruct metabolic pathways using graphical models. Our results highlight the necessity of non-genetic residual biological variation for reliable inference. Recovery of the ordering within a pathway is possible, but should not be expected. Causal inference is sensitive to subtle patterns in the correlation structure that may be driven by a variety of factors, which may not emphasize the substrate-product relationship. We illustrate the effects of metabolic pathway architecture, epistasis and stochastic variation on correlation structure and graphical model-derived networks. We conclude that graphical models should be interpreted cautiously, especially if the implied causal relationships are to be used in the design of intervention strategies
Proton Magnetic Resonance Spectroscopy Reveals Neuroprotection by Oral Minocycline in a Nonhuman Primate Model of Accelerated NeuroAIDS
Background: Despite the advent of highly active anti-retroviral therapy (HAART), HIV-associated neurocognitive disorders continue to be a significant problem. In efforts to understand and alleviate neurocognitive deficits associated with HIV, we used an accelerated simian immunodeficiency virus (SIV) macaque model of NeuroAIDS to test whether minocycline is neuroprotective against lentiviral-induced neuronal injury. Methodology/Principal Findings: Eleven rhesus macaques were infected with SIV, depleted of CD8+ lymphocytes, and studied until eight weeks post inoculation (wpi). Seven animals received daily minocycline orally beginning at 4 wpi. Neuronal integrity was monitored in vivo by proton magnetic resonance spectroscopy and post-mortem by immunohistochemistry for synaptophysin (SYN), microtubule-associated protein 2 (MAP2), and neuronal counts. Astrogliosis and microglial activation were quantified by measuring glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (IBA-1), respectively. SIV infection followed by CD8+ cell depletion induced a progressive decline in neuronal integrity evidenced by declining N-acetylaspartate/creatine (NAA/Cr), which was arrested with minocycline treatment. The recovery of this ratio was due to increases in NAA, indicating neuronal recovery, and decreases in Cr, likely reflecting downregulation of glial cell activation. SYN, MAP2, and neuronal counts were found to be higher in minocycline-treated animals compared to untreated animals while GFAP and IBA-1 expression were decreased compared to controls. CSF and plasma viral loads were lower in MN-treated animals. Conclusions/Significance: In conclusion, oral minocycline alleviates neuronal damage induced by the AIDS virus
Relationship between fibroblastic foci profusion and high resolution CT morphology in fibrotic lung disease
Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance
Two-particle azimuthal correlations in photonuclear ultraperipheral Pb plus Pb collisions at 5.02 TeV with ATLAS
Two-particle long-range azimuthal correlations are measured in photonuclear collisions using
1.7
nb
−
1
of 5.02 TeV
Pb
+
Pb
collision data collected by the ATLAS experiment at the CERN Large Hadron Collider. Candidate events are selected using a dedicated high-multiplicity photonuclear event trigger, a combination of information from the zero-degree calorimeters and forward calorimeters, and from pseudorapidity gaps constructed using calorimeter energy clusters and charged-particle tracks. Distributions of event properties are compared between data and Monte Carlo simulations of photonuclear processes. Two-particle correlation functions are formed using charged-particle tracks in the selected events, and a template-fitting method is employed to subtract the nonflow contribution to the correlation. Significant nonzero values of the second- and third-order flow coefficients are observed and presented as a function of charged-particle multiplicity and transverse momentum. The results are compared with flow coefficients obtained in proton-proton and proton-lead collisions in similar multiplicity ranges, and with theoretical expectations. The unique initial conditions present in this measurement provide a new way to probe the origin of the collective signatures previously observed only in hadronic collision
Measurement of the associated production of a Higgs boson decaying into b-quarks with a vector boson at high transverse momentum in pp collisions at TeV with the ATLAS detector
The associated production of a Higgs boson with a W or Z boson decaying into leptons and where the Higgs boson decays to a pair is measured in the high vector-boson transverse momentum regime, above 250 GeV, with the ATLAS detector. The analysed data, corresponding to an integrated luminosity of , were collected in proton–proton collisions at the Large Hadron Collider between 2015 and 2018 at a centre-of-mass energy of . The measured signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model, is corresponding to an observed (expected) significance of 2.1 (2.7) standard deviations. Cross-sections of associated production of a Higgs boson decaying into b quark pairs with a W or Z gauge boson, decaying into leptons, are measured in two exclusive vector boson transverse momentum regions, 250–400 GeV and above 400 GeV, and interpreted as constraints on anomalous couplings in the framework of a Standard Model effective field theory
- …
