9 research outputs found
Dynamics of Tachyon and Phantom Field beyond the Inverse Square Potentials
We investigate the cosmological evolution of the tachyon and phantom-tachyon
scalar field by considering the potential parameter () as a function of another potential parameter
(), which correspondingly extends the
analysis of the evolution of our universe from two-dimensional autonomous
dynamical system to the three-dimension. It allows us to investigate the more
general situation where the potential is not restricted to inverse square
potential and .One result is that, apart from the inverse square potential,
there are a large number of potentials which can give the scaling and dominant
solution when the function equals for one or some
values of as well as the parameter satisfies
condition Eq.(18) or Eq.(19). We also find that for a class of different
potentials the dynamics evolution of the universe are actually the same and
therefore undistinguishable.Comment: 8 pages, no figure, accepted by The European Physical Journal
C(2010), online first,
http://www.springerlink.com/content/323417h708gun5g8/?p=dd373adf23b84743b523a3fa249d51c7&pi=
Search for heavy long-lived charged R-hadrons with the ATLAS detector in 3.2 fb(-1) of proton-proton collision data at root s=13 TeV
A search for heavy long-lived charged R-hadrons is reported using a data sample corresponding to
3.2 fb−1 of proton–proton collisions at √s = 13 TeV collected by the ATLAS experiment at the Large
Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow
propagation velocities, which are signatures of heavy charged particles travelling significantly slower than
the speed of light. No significant deviations from the expected background are observed. Upper limits at
95% confidence level are provided on the production cross section of long-lived R-hadrons in the mass
range from 600 GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV,
805 GeV and 890 GeV, respectively
Maternal separation alters nerve growth factor and corticosterone levels but not the DNA methylation status of the exon 17 glucocorticoid receptor promoter region
Separating rat pups from their mothers during the early stages of life is an animal model commonly used to study the development of psychiatric disorders such as anxiety and depression. The present study investigated how soon after the termination of the maternal separation period behavioural and neuroendocrine abnormalities relevant to above-mentioned illnesses would manifest. Sprague Dawley rat pups were subjected to maternal separation (3 h per day from postnatal day 2 through 14) and their behaviour and HPA axis activity determined 7 d later. We also measured nerve growth factor levels in their hippocampi and assessed the DNA methylation status of the promoter region of exon 17 of the glucocorticoid receptor in this brain region. As early as 7 d after the termination of the adverse event, a change in behaviour was observed that was associated with increased plasma corticosterone release and elevated nerve growth factor levels in the hippocampus. No alteration in the methylation status of the exon 17 glucocorticoid receptor promoter region was observed. Our data indicate that early life adversity may lead to the rapid development of abnormal behaviours and HPA axis dysregulation though no epigenetic changes to the exon 17 glucocorticoid receptor promoter region occurred. We further propose that the observed increased neurotrophin levels reflect compensatory mechanisms that attempt to combat the long-term deleterious effects of maternal separation. © 2009 Springer Science+Business Media, LLC.Articl