31 research outputs found

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Regulation of 5-HT Receptors and the Hypothalamic-Pituitary-Adrenal Axis

    Full text link
    Disturbances in the serotonin (5-HT) system is the neurobiological abnormality most consistently associated with suicide. Hyperactivity of the hypothalmic-pituitary-adrenal (HPA) axis is also described in suicide victims. The HPA axis is the classical neuroendocrine system that responds to stress and whose final product, corticosteroids, targets components of the limbic system, particularly the hippocampus. We will review resulsts from animal studies that point to the possibility that many of the 5-HT receptor changes observed in suicide brains may be a result of, or may be worsened by, the HPA overactivity that may be present in some suicide victims. The results of these studies can be summarized as follows: (1) chronic unpredictable stress produces high corticosteroid levels in rats; (2) chronic stress also results in changes in specific 5-HT receptors (increases in cortical 5-HT2A and decreases in hipocampal 5-HT1A and 5-HT1B); (3) chronic antidepressant administration prevents many of the 5-HT receptor changes observed after stress; and (4) chronic antidepressant administration reverses the overactivity of the HPA axis. If indeed 5-HT receptors have a partial role in controlling affective states, then their modulation by corticosteroids provides a potential mechanism by which these hormones may regulate mood. These data may also provide a biological understanding of how stressful events may increase the risk for suicide in vulnerable individuals and may help us elucidate the neurobiological underpinnings of treatment resistance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73437/1/j.1749-6632.1997.tb52357.x.pd

    Domestic dog health worsens with socio-economic deprivation of their home communities

    Get PDF
    Dogs play an important role in infectious disease transmission as reservoir hosts of many zoonotic and wildlife pathogens. Nevertheless, unlike wildlife species involved in the life cycle of pathogens, whose health status might be a direct reflection of their fitness and competitive abilities, dog health condition could be sensitive to socio-economic factors impacting the well-being of their owners. Here, we compare several dog health indicators in three rural communities of Panama with different degrees of socio-economic deprivation. From a total of 78 individuals, we collected blood and fecal samples, and assessed their body condition. With the blood samples, we performed routine hematologic evaluation (complete blood counts) and measured cytokine levels (Interferon-Îł and Interleukin-10) through enzyme-linked immunosorbent assays. With the fecal samples we diagnosed helminthiases. Dogs were also serologically tested for exposure to Trypanosoma cruzi and canine distemper virus, and molecular tests were done to assess T. cruzi infection status. We found significant differences between dog health measurements, pathogen prevalence, parasite richness, and economic status of the human communities where the dogs lived. We found dogs that were less healthy, more likely to be infected with zoonotic pathogens, and more likely to be seropositive to canine distemper virus in the communities with lower economic status. This study concludes that isolated communities of lower economic status in Panama may have less healthy dogs that could become major reservoirs in the transmission of diseases to humans and sympatric wildlife

    Influence of the structure and composition of titanium nitride substrates on carbon nanotubes grown by chemical vapour deposition

    No full text
    International audienceThe influence of nano-structure and composition of the substrate on the properties of carbon nanotubes (CNTs) is presented. The samples are obtained following a sequential in situ deposition routine. First, TiNxOy films are grown on a crystalline silicon substrate. Immediately, dispersed nickel catalyst particles are deposited on the film. The non-stoichiometric TiNxOy films and Ni particles are grown by ion beam sputtering of Ti and Ni targets, respectively. Soon after that, the CNTs are grown by feeding acetylene gas into the chamber and maintaining the substrate at 973 K. In situ x-ray photoelectron spectroscopy allows compositional and structural analysis in all the stages of the sample growth process. The CNTs are further studied by scanning and transmission electron microscopy techniques, showing different population densities, sizes and diameters as a function of the oxygen content in the TiNxOy films. The results show that oxygen influences the surface diffusion mobility of the precursor carbon atoms involved in the growth of nanotubes suggesting the inhibition of catalyst particle coarsening. It is concluded that, in addition to acting as a diffusion barrier between the catalyst particles and the silicon support, the TiNxOy films modify the growth kinetics of the CNTs
    corecore