129 research outputs found

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Female Institutional Directors on Boards and Firm Value

    Get PDF
    The aim of this research is to examine what impact female institutional directors on boards have on corporate performance. Previous research shows that institutional female directors cannot be considered as a homogeneous group since they represent investors who may or may not maintain business relations with the companies on whose corporate boards they sit. Thus, it is not only the effect of female institutional directors as a whole on firm value that has been analysed, but also the impact of pressure-resistant female directors, who represent institutional investors (investment, pension and mutual funds) that only invest in the company, and do not maintain a business relation with the firm. We hypothesize that there is a non-linear association, specifically quadratic, between institutional and pressure-resistant female directors on boards and corporate performance. Our results report that female institutional directors on boards enhance corporate performance, but when they reach a certain threshold on boards (11.72 %), firm value decreases. In line with female institutional directors, pressure-resistant female directors on boards also increase firm value, but only up to a certain figure (12.71 % on boards), above which they have a negative impact on firm performance. These findings are consistent with an inverted U-shaped relationship between female institutional directors and pressure-resistant female directors and firm performance

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Performance of the ATLAS muon trigger in pp collisions at [Formula: see text] TeV

    Get PDF
    The performance of the ATLAS muon trigger system is evaluated with proton-proton collision data collected in 2012 at the Large Hadron Collider at a centre-of-mass energy of 8 TeV. It is primarily evaluated using events containing a pair of muons from the decay of [Formula: see text] bosons. The efficiency of the single-muon trigger is measured for muons with transverse momentum [Formula: see text] GeV, with a statistical uncertainty of less than 0.01 % and a systematic uncertainty of 0.6 %. The [Formula: see text] range for efficiency determination is extended by using muons from decays of [Formula: see text] mesons, [Formula: see text] bosons, and top quarks. The muon trigger shows highly uniform and stable performance. The performance is compared to the prediction of a detailed simulation

    Monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    Get PDF
    The liquid argon calorimeter is a key component of the ATLAS detector installed at the CERN Large Hadron Collider. The primary purpose of this calorimeter is the measurement of electron and photon kinematic properties. It also provides a crucial input for measuring jets and missing transverse momentum. An advanced data monitoring procedure was designed to quickly identify issues that would affect detector performance and ensure that only the best quality data are used for physics analysis. This article presents the validation procedure developed during the 2011 and 2012 LHC data-taking periods, in which more than 98% of the proton-proton luminosity recorded by ATLAS at a centre-of-mass energy of 7-8 TeV had calorimeter data quality suitable for physics analysis

    Search for Higgs and Z Boson Decays to J/ψγ and ϒ(nS)γ with the ATLAS Detector.

    Get PDF
    A search for the decays of the Higgs and Z bosons to J/ψγ and ϒ(nS)γ (n=1,2,3) is performed with pp collision data samples corresponding to integrated luminosities of up to 20.3  fb^{-1} collected at sqrt[s]=8  TeV with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events is observed above expected backgrounds and 95% C.L. upper limits are placed on the branching fractions. In the J/ψγ final state the limits are 1.5×10^{-3} and 2.6×10^{-6} for the Higgs and Z boson decays, respectively, while in the ϒ(1S,2S,3S)γ final states the limits are (1.3,1.9,1.3)×10^{-3} and (3.4,6.5,5.4)×10^{-6}, respectively.We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR,MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/ IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands;BRF and RCN, Norway; MNiSW and NCN, Poland;GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR;MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain;SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC,Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America

    Search for the standard model Higgs boson in the diphoton decay channel with 4.9fb -1 of pp collision data at √s=7TeV with atlas

    Get PDF
    A search for the standard model Higgs boson is performed in the diphoton decay channel. The data used correspond to an integrated luminosity of 4.9  fb-1 collected with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a center-of-mass energy of √s=7  TeV. In the diphoton mass range 110–150 GeV, the largest excess with respect to the background-only hypothesis is observed at 126.5 GeV, with a local significance of 2.8 standard deviations. Taking the look-elsewhere effect into account in the range 110–150 GeV, this significance becomes 1.5 standard deviations. The standard model Higgs boson is excluded at 95% confidence level in the mass ranges of 113–115 GeV and 134.5–136 GeV

    Search for the standard model Higgs boson in the diphoton decay channel with 4.9fb -1 of pp collision data at √s=7TeV with atlas

    Get PDF
    A search for the standard model Higgs boson is performed in the diphoton decay channel. The data used correspond to an integrated luminosity of 4.9  fb-1 collected with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a center-of-mass energy of √s=7  TeV. In the diphoton mass range 110–150 GeV, the largest excess with respect to the background-only hypothesis is observed at 126.5 GeV, with a local significance of 2.8 standard deviations. Taking the look-elsewhere effect into account in the range 110–150 GeV, this significance becomes 1.5 standard deviations. The standard model Higgs boson is excluded at 95% confidence level in the mass ranges of 113–115 GeV and 134.5–136 GeV
    corecore