135 research outputs found

    Fermion Masses and Mixing in Four and More Dimensions

    Full text link
    We give an overview of recent progress in the study of fermion mass and flavor mixing phenomena. Mass matrix ansatze are considered within the SM and SUSY GUTs where some predictive frameworks based on SU(5) and SO(10) are reviewed. We describe a variety of schemes to construct quark mass matrices in extra dimensions focusing on four major classes: models with the SM residing on 3-brane, models with universal extra dimensions, models with split fermions and models with warped extra dimensions. We outline how realistic patterns of quark mass matrices could be derived from orbifold models in heterotic superstring theory. Finally, we address the fermion mass problem in intersecting D-branes scenarios, and present models with D6-branes able to give a good quantitatively description of quark masses and mixing. The role of flavor/CP violation problem as a probe of new physics is emphasized.Comment: a review based on seminars presented by S.K. in different places, 34 pages, late

    Contenido y distribución de Mn en una secuencia de suelos. Relaciones con el Fe

    Get PDF
    8 páginas, 1 tabla y un dendogramaSe estudian los contenidos en Mn, presentes en varias formas, en algunas muestras de una secuencia de suelos. Esta secuencia incluye suelos de tipo Regosol, Cambisol, Luvisol y Planosol. Las cantidades totales de Mn están por debajo de la media mundial. Se detecta que las formas extraídas por métodos selectivos son algo más elevadas en la fracción arcilla que en la fracción < 2m.m Se puede indicar que hay cierta asociación Mn-Fe en los suelos estudiados.Peer reviewe

    Variability estimation in resistive switching devices, a numerical and kinetic Monte Carlo perspective

    Get PDF
    Acknowledgments The authors thank the support of the Spanish Ministry of Science, Innovation and Universities and the FEDER program through projects TEC2017-84321-C4-1-R, TEC2017-84321-C4-3-R, and projects A.TIC.117.UGR18, IE2017-5414 and B.TIC.624.UGR20 funded by the Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía (Spain) and the FEDER program. Funding for open access charge: Universidad de Granada/CBUAWe have analyzed variability in resistive memories (Resistive Random Access Memories, RRAMs) making use of advanced numerical techniques to process experimental measurements and simulations based on the kinetic Monte Carlo technique. The devices employed in the study were fabricated using the TiN/Ti/HfO2/W stack. The switching parameters were obtained making use of new developed extraction methods. The appropriateness of the advanced parameter extraction methodologies has been checked by comparison to kinetic Monte Carlo simulations; in particular, the reset and set events have been studied and detected. The data obtained were employed to shed light on the resistive switching operation and the cycle-to-cycle variability. It has been shown that variability depends on the numerical technique employed to obtain the set and reset voltages, therefore, this issue must be taken into consideration in RS characterization and modeling studies. The proposed techniques are complementary and depending on the technology and the curves shape the features of a particular method could make it to be the most appropriate.Spanish Ministry of Science, Innovation and Universities and the FEDER program through projects TEC2017-84321-C4-1-R, TEC2017-84321-C4-3-RConsejería de Conocimiento, Investigación y Universidad, Junta de Andalucía (Spain) and the FEDER program, projects A.TIC.117.UGR18, IE2017-5414 and B.TIC.624.UGR20Funding for open access charge: Universidad de Granada/CBU

    Mass scales, supersymmetry breaking and open strings

    Full text link
    We review physical motivations and possible realizations of string vacua with large internal volume and/or low string scale and discuss the issue of supersymmetry breaking. In particular, we describe the key features of Scherk-Schwarz deformations in type I models and conclude by reviewing the phenomenon of ``brane supersymmetry breaking'': the tadpole conditions of some type-I models require that supersymmetry be {\it broken at the string scale} on a collection of branes, while being exact, to lowest order, in the bulk and on other branes.Comment: Based on talks presented by the authors at STRINGS '99. Submitted to Classical and Quantum Gravity. misprints correcte

    Bats' Conquest of a Formidable Foraging Niche: The Myriads of Nocturnally Migrating Songbirds

    Get PDF
    Along food chains, i.e., at different trophic levels, the most abundant taxa often represent exceptional food reservoirs, and are hence the main target of consumers and predators. The capacity of an individual consumer to opportunistically switch towards an abundant food source, for instance, a prey that suddenly becomes available in its environment, may offer such strong selective advantages that ecological innovations may appear and spread rapidly. New predator-prey relationships are likely to evolve even faster when a diet switch involves the exploitation of an unsaturated resource for which few or no other species compete. Using stable isotopes of carbon and nitrogen as dietary tracers, we provide here strong support to the controversial hypothesis that the giant noctule bat Nyctalus lasiopterus feeds on the wing upon the multitude of flying passerines during their nocturnal migratory journeys, a resource which, while showing a predictable distribution in space and time, is only seasonally available. So far, no predator had been reported to exploit this extraordinarily diverse and abundant food reservoir represented by nocturnally migrating passerines

    Supersymmetry with Light Stops

    Full text link
    Recent LHC data, together with the electroweak naturalness argument, suggest that the top squarks may be significantly lighter than the other sfermions. We present supersymmetric models in which such a split spectrum is obtained through "geometries": being "close to" electroweak symmetry breaking implies being "away from" supersymmetry breaking, and vice versa. In particular, we present models in 5D warped spacetime, in which supersymmetry breaking and Higgs fields are located on the ultraviolet and infrared branes, respectively, and the top multiplets are localized to the infrared brane. The hierarchy of the Yukawa matrices can be obtained while keeping near flavor degeneracy between the first two generation sfermions, avoiding stringent constraints from flavor and CP violation. Through the AdS/CFT correspondence, the models can be interpreted as purely 4D theories in which the top and Higgs multiplets are composites of some strongly interacting sector exhibiting nontrivial dynamics at a low energy. Because of the compositeness of the Higgs and top multiplets, Landau pole constraints for the Higgs and top couplings apply only up to the dynamical scale, allowing for a relatively heavy Higgs boson, including m_h = 125 GeV as suggested by the recent LHC data. We analyze electroweak symmetry breaking for a well-motivated subset of these models, and find that fine-tuning in electroweak symmetry breaking is indeed ameliorated. We also discuss a flat space realization of the scenario in which supersymmetry is broken by boundary conditions, with the top multiplets localized to a brane while other matter multiplets delocalized in the bulk.Comment: 27 pages, 7 figure

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector

    D = 4 chiral string compactifications from intersecting branes

    Get PDF
    Intersecting Dp -branes often give rise to chiral fermions living on their intersections. We study the construction of four-dimensional chiralgauge theories by considering configurations of type II D(3+n) -branes wrapped on nontrivial n -cycles on T 2n ×(R 2(3−n) /Z N ), for n=1, 2, 3. The gauge theories on the four noncompact dimensions of the brane world-volume are generically chiral and nonsupersymmetric. We analyze consistency conditions (RR tadpole cancellation) for these models, and their relation to four-dimensional anomaly cancellation. Cancellation of U(1) gauge anomalies involves a Green–Schwarz mechanism mediated by RR partners of untwisted and/or twisted moduli. This class of models is of potential phenomenological interest, and we construct explicit examples of SU(3)×SU(2)×U(1) three-generation models. The models are nonsupersymmetric, but the string scale may be lowered close to the weak scale so that the standard hierarchy problem is avoided. We also comment on the presence of scalar tachyons and possible ways to avoid the associated instabilities. We discuss the existence of (meta)stable configurations of D-branes on 3-cycles in (T 2 ) 3 , free of tachyons for certain ranges of the six-torus moduli
    corecore