30 research outputs found

    Gastrointestinal nematode infections in German sheep

    Get PDF
    The objective of the present study was to determine the prevalence and variation of natural gastrointestinal nematode (GIN) infections in lambs according to birth type, gender and breed based on individual faecal egg counts (FEC) from various regions in Germany. A total of 3,924 lambs (3 to 15 months old) with different genetic backgrounds (Merinoland, German Blackhead Mutton, Rhoen, Texel and Merino long-wool) were individually sampled during the grazing period between 2006 and 2008. Furthermore, pooled faecal samples from each of the farms were cultured in order to differentiate the third-stage larvae of the nematode spp. Sixty-three percent of the lambs were infected with GIN. The infections were mostly low to moderate and involved several nematode species. The Trichostrongylus spp. was the predominant species based on the percentage of larvae in faecal cultures. Only 11.4% of the lambs were free of Eimeria oocysts. Tapeworm eggs were encountered in 13.2% of all samples. The prevalence of GIN infections varied significantly (P < 0.001) among farms. A significantly higher FEC (P < 0.05) was observed in multiple-born lambs when compared with singletons. Moreover, male lambs were more susceptible to infection than females (P < 0.001). No significant differences (P > 0.05) were observed between breeds regarding FEC. Inter-individual variations were higher than inter-breed differences, which may indicate the possibility of selection within these breeds for parasites resistance as described in earlier studies

    Evaluating the performance of land surface model ORCHIDEE-CAN v1.0 on water and energy flux estimation with a single- and multi-layer energy budget scheme

    Get PDF
    Canopy structure is one of the most important vegetation characteristics for land-atmosphere interactions, as it determines the energy and scalar exchanges between the land surface and the overlying air mass. In this study we evaluated the performance of a newly developed multilayer energy budget in the ORCHIDEE-CAN v1.0 land surface model (Organising Carbon and Hydrology In Dynamic Ecosystems - CANopy), which simulates canopy structure and can be coupled to an atmospheric model using an implicit coupling procedure. We aim to provide a set of accept-able parameter values for a range of forest types. Top-canopy and sub-canopy flux observations from eight sites were collected in order to conduct this evaluation. The sites crossed climate zones from temperate to boreal and the vegetation types included deciduous, evergreen broad-leaved and evergreen needle-leaved forest with a maximum leaf area index (LAI; all-sided) ranging from 3.5 to 7.0. The parametrization approach proposed in this study was based on three selected physical processes - namely the diffusion, advection, and turbulent mixing within the canopy. Short-term sub-canopy observations and long-term surface fluxes were used to calibrate the parameters in the sub-canopy radiation, turbulence, and resistance modules with an automatic tuning process. The multi-layer model was found to capture the dynamics of sub-canopy turbulence, temperature, and energy fluxes. The performance of the new multi-layer model was further compared against the existing single-layer model. Although the multi-layer model simulation results showed few or no improvements to both the nighttime energy balance and energy partitioning during winter compared with a single-layer model simulation, the increased model complexity does provide a more detailed description of the canopy micrometeorology of various forest types. The multi-layer model links to potential future environmental and ecological studies such as the assessment of in-canopy species vulnerability to climate change, the climate effects of disturbance intensities and frequencies, and the consequences of biogenic volatile organic compound (BVOC) emissions from the terrestrial ecosystem.Peer reviewe

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe

    Tropical tree growth driven by dry-season climate variability

    Get PDF
    Interannual variability in the global land carbon sink is strongly related to variations in tropical temperature and rainfall. This association suggests an important role for moisture-driven fluctuations in tropical vegetation productivity, but empirical evidence to quantify the responsible ecological processes is missing. Such evidence can be obtained from tree-ring data that quantify variability in a major vegetation productivity component: woody biomass growth. Here we compile a pantropical tree-ring network to show that annual woody biomass growth increases primarily with dry-season precipitation and decreases with dry-season maximum temperature. The strength of these dry-season climate responses varies among sites, as reflected in four robust and distinct climate response groups of tropical tree growth derived from clustering. Using cluster and regression analyses, we find that dry-season climate responses are amplified in regions that are drier, hotter and more climatically variable. These amplification patterns suggest that projected global warming will probably aggravate drought-induced declines in annual tropical vegetation productivity. Our study reveals a previously underappreciated role of dry-season climate variability in driving the dynamics of tropical vegetation productivity and consequently in influencing the land carbon sink.We acknowledge financial support to the co-authors provided by Agencia Nacional de Promoción Científica y Tecnológica, Argentina (PICT 2014-2797) to M.E.F.; Alberta Mennega Stichting to P.G.; BBVA Foundation to H.A.M. and J.J.C.; Belspo BRAIN project: BR/143/A3/HERBAXYLAREDD to H.B.; Confederação da Agricultura e Pecuária do Brasil - CNA to C.F.; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES, Brazil (PDSE 15011/13-5 to M.A.P.; 88881.135931/2016-01 to C.F.; 88887.199858/2018-00 to G.A.-P.; Finance Code 001 for all Brazilian collaborators); Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, Brazil (ENV 42 to O.D.; 1009/4785031-2 to G.C.; 311874/2017-7 to J.S.); CONACYT-CB-2016-283134 to J.V.-D.; CONICET to F.A.R.; CUOMO FOUNDATION (IPCC scholarship) to M.M.; Deutsche Forschungsgemeinschaft - DFG (BR 1895/15-1 to A.B.; BR 1895/23-1 to A.B.; BR 1895/29-1 to A.B.; BR 1895/24-1 to M.M.); DGD-RMCA PilotMAB to B.T.; Dirección General de Asuntos del Personal Académico of the UNAM (Mexico) to R.B.; Elsa-Neumann-Scholarship of the Federal State of Berlin to F.S.; EMBRAPA Brazilian Agricultural Research Corporation to C.F.; Equatorian Dirección de Investigación UNL (21-DI-FARNR-2019) to D.P.-C.; São Paulo Research Foundation FAPESP (2009/53951-7 to M.T.-F.; 2012/50457-4 to G.C.; 2018/01847‐0 to P.G.; 2018/24514-7 to J.R.V.A.; 2019/08783-0 to G.M.L.; 2019/27110-7 to C.F.); FAPESP-NERC 18/50080-4 to G.C.; FAPITEC/SE/FUNTEC no. 01/2011 to M.A.P.; Fulbright Fellowship to B.J.E.; German Academic Exchange Service (DAAD) to M.I. and M.R.; German Ministry of Education, Science, Research, and Technology (FRG 0339638) to O.D.; ICRAF through the Forests, Trees, and Agroforestry research programme of the CGIAR to M.M.; Inter-American Institute for Global Change Research (IAI-SGP-CRA 2047) to J.V.-D.; International Foundation for Science (D/5466-1) to M.I.; Lamont Climate Center to B.M.B.; Miquelfonds to P.G.; National Geographic Global Exploration Fund (GEFNE80-13) to I.R.; USA’s National Science Foundation NSF (IBN-9801287 to A.J.L.; GER 9553623 and a postdoctoral fellowship to B.J.E.); NSF P2C2 (AGS-1501321) to A.C.B., D.G.-S. and G.A.-P.; NSF-FAPESP PIRE 2017/50085-3 to M.T.-F., G.C. and G.M.L.; NUFFIC-NICHE programme (HEART project) to B.K., E.M., J.H.S., J.N. and R. Vinya; Peru ‘s CONCYTEC and World Bank (043-2019-FONDECYT-BM-INC.INV.) to J.G.I.; Peru’s Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica (FONDECYT-BM-INC.INV 039-2019) to E.J.R.-R. and M.E.F.; Programa Bosques Andinos - HELVETAS Swiss Intercooperation to M.E.F.; Programa Nacional de Becas y Crédito Educativo - PRONABEC to J.G.I.; Schlumberger Foundation Faculty for the Future to J.N.; Sigma Xi to A.J.L.; Smithsonian Tropical Research Institute to R. Alfaro-Sánchez.; Spanish Ministry of Foreign Affairs AECID (11-CAP2-1730) to H.A.M. and J.J.C.; UK NERC grant NE/K01353X/1 to E.G.Peer reviewe

    Baseline chest computed tomography for diagnosis of invasive aspergillosis in patients with acute myeloid leukaemia treated with intensive chemotherapy:A retrospective single-centre cohort study

    Get PDF
    Background: Invasive pulmonary aspergillosis (IPA) is a relatively common infection in patients with acute myeloid leukaemia (AML), and is associated with high mortality rates. Optimising early detection is key to reduce the burden of IPA in this population. In this retrospective cohort study, we evaluated the added value of baseline chest CT before start of classical induction chemotherapy. Methods: Adult patients receiving first-line intensive chemotherapy for AML were included if a baseline chest CT scan was available (±7 days). Data were collected from the electronic health record. IPA was classified using the EORTC/MSGERC 2020 consensus definitions. Results:Between 2015 and 2019, 99 patients were included. During first-line treatment, 29/99 (30%) patients developed a probable IPA. Baseline chest CT was abnormal in 61/99 (62%) and 14/61 (23%) patients had typical radiological signs for IPA. An abnormal scan showed a trend towards higher risk for IPA (hazard ratio (HR): 2.12; 95% CI 0.95–4.84). Ground glass opacities were a strong predictor for developing IPA (HR 3.35: 95% CI 1.61–7.00). No probable/proven IPA was diagnosed at baseline; however, a bronchoalveolar lavage (BAL) at baseline was only performed in seven patients. Twelve-week mortality was higher in patients with IPA (7/26, 27% vs. 5/59, 8%; p =.024). Conclusion: Baseline chest CT scan could be an asset in the early diagnosis of IPA and contribute to risk estimation for IPA. In patients with an abnormal baseline CT, performing a BAL should be considered more frequently, and not only in patients with radiological findings typical for IPA.</p

    Linking Flux Network Measurements to Continental Scale Simulations: Ecosystem Carbon Dioxide Exchange Capacity under Non-Water-Stressed Conditions

    Get PDF
    This paper examines long-term eddy covariance data from 18 European and 17 North American and Asian forest, wetland, tundra, grassland, and cropland sites under nonwater- stressed conditions with an empirical rectangular hyperbolic light response model and a single layer two light-class carboxylase-based model. Relationships according to ecosystem functional type are demonstrated between empirical and physiological parameters, suggesting linkages between easily estimated parameters and those with greater potential for process interpretation. Relatively sparse documentation of leaf area index dynamics at flux tower sites is found to be a major difficulty in model inversion and flux interpretation. Therefore, a simplification of the physiological model is carried out for a subset of European network sites with extensive ancillary data. The results from these selected sites are used to derive a new parameter and means for comparing empirical and physiologically based methods across all sites, regardless of ancillary data. The results from the European analysis are then compared with results from the other Northern Hemisphere sites and similar relationships for the simplified process-based parameter were found to hold for European, North American, and Asian temperate and boreal climate zones. This parameter is useful for bridging between flux network observations and continental scale spatial simulations of vegetation/atmosphere carbon dioxide exchange
    corecore