770 research outputs found
Geometric control of myogenic cell fate.
This work combines expertise in stem cell biology and bioengineering to define the system for geometric control of proliferation and differentiation of myogenic progenitor cells. We have created an artificial niche of myogenic progenitor cells, namely, modified extracellular matrix (ECM) substrates with spatially embedded growth or differentiation factors (GF, DF) that predictably direct muscle cell fate in a geometric pattern. Embedded GF and DF signal progenitor cells from specifically defined areas on the ECM successfully competed against culture media for myogenic cell fate determination at a clearly defined boundary. Differentiation of myoblasts into myotubes is induced in growth-promoting medium, myotube formation is delayed in differentiation-promoting medium, and myogenic cells, at different stages of proliferation and differentiation, can be induced to coexist adjacently in identical culture media. This method can be used to identify molecular interactions between cells in different stages of myogenic differentiation, which are likely to be important determinants of tissue repair. The designed ECM niches can be further developed into a vehicle for transplantation of myogenic progenitor cells maintaining their regenerative potential. Additionally, this work may also serve as a general model to engineer synthetic cellular niches to harness the regenerative potential of organ stem cells
Recommended from our members
3D Quantification of Vascular-Like Structures in z Stack Confocal Images
Optical slice microscopy is commonly used to characterize the morphometric features of 3D cellular cultures, such as in vitro vascularization. However, the quantitative analysis of those structures is often performed on a single 2D maximum intensity projection image, limiting the accuracy of data obtained from 3D cultures. Here, we present a protocol for the quantitative analysis of z stack images, utilizing Fiji, Amira, and WinFiber3D. This protocol facilitates the in-depth examination of vascular-like structures within 3D cell culture models
Three-dimensional bioprinting in cardiovascular disease: current status and future directions
Three-dimensional (3D) printing plays an important role in cardiovascular disease through the use of personalised models that replicate the normal anatomy and its pathology with high accuracy and reliability. While 3D printed heart and vascular models have been shown to improve medical education, preoperative planning and simulation of cardiac procedures, as well as to enhance communication with patients, 3D bioprinting represents a potential advancement of 3D printing technology by allowing the printing of cellular or biological components, functional tissues and organs that can be used in a variety of applications in cardiovascular disease. Recent advances in bioprinting technology have shown the ability to support vascularisation of large-scale constructs with enhanced biocompatibility and structural stability, thus creating opportunities to replace damaged tissues or organs. In this review, we provide an overview of the use of 3D bioprinting in cardiovascular disease with a focus on technologies and applications in cardiac tissues, vascular constructs and grafts, heart valves and myocardium. Limitations and future research directions are highlighted
Free Form Deformation-Based Image Registration Improves Accuracy of Traction Force Microscopy
Traction Force Microscopy (TFM) is a widespread method used to recover cellular tractions from the deformation that they cause in their surrounding substrate. Particle Image Velocimetry (PIV) is commonly used to quantify the substrate's deformations, due to its simplicity and efficiency. However, PIV relies on a block-matching scheme that easily underestimates the deformations. This is especially relevant in the case of large, locally non-uniform deformations as those usually found in the vicinity of a cell's adhesions to the substrate. To overcome these limitations, we formulate the calculation of the deformation of the substrate in TFM as a non-rigid image registration process that warps the image of the unstressed material to match the image of the stressed one. In particular, we propose to use a B-spline -based Free Form Deformation (FFD) algorithm that uses a connected deformable mesh to model a wide range of flexible deformations caused by cellular tractions. Our FFD approach is validated in 3D fields using synthetic (simulated) data as well as with experimental data obtained using isolated endothelial cells lying on a deformable, polyacrylamide substrate. Our results show that FFD outperforms PIV providing a deformation field that allows a better recovery of the magnitude and orientation of tractions. Together, these results demonstrate the added value of the FFD algorithm for improving the accuracy of traction recovery.Funded by Ministerio de Economía y Competividad (ES); url: http://www.mineco.gob.es/;
RyC2010-06094, Fundación Ramón Areces (ES); url: http://www.fundacionareces.es/fundacionareces/, Ministerío de Economía y Competividad (ES); url: http://www.mineco.gob.es/; SAF2011-24953 (MVM); Ministerio de Economía y Competividad (ES); url: http://www.mineco.gob.es/; DPI2012-38090-C1, European Research Council (BE); url: http://erc.europa.eu/; 306751 (JMGA); European Research Council (BE); url: http://erc.europa.eu/; 308223 (HVO); Ministerio de Economía y Competividad (ES);
url: http://www.mineco.gob.es/; DPI2012-38090-C3 (COS); and Ministerio de Economía y Competividad (ES); url: http://www.mineco.gob.es/; TEC2013- 48552-C2-1-R (AMB). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.European Community's Seventh Framework Progra
Fabrication of human myocardium using multidimensional modelling of engineered tissues
Biofabrication of human tissues has seen a meteoric growth triggered by recent technical advancements such as human induced pluripotent stem cells (hiPSCs) and additive manufacturing. However, generation of cardiac tissue is still hampered by lack of adequate mechanical properties and crucially by the often unpredictable post-fabrication evolution of biological components. In this study we employ melt electrowriting (MEW) and hiPSC-derived cardiac cells to generate fibre-reinforced human cardiac minitissues. These are thoroughly characterized in order to build computational models and simulations able to predict their post-fabrication evolution. Our results show that MEW-based human minitissues display advanced maturation 28 post-generation, with a significant increase in the expression of cardiac genes such as MYL2, GJA5, SCN5A and the MYH7/MYH6 and MYL2/MYL7 ratios. Human iPSC-cardiomyocytes are significantly more aligned within the MEW-based 3D tissues, as compared to conventional 2D controls, and also display greater expression of C ×43. These are also correlated with a more mature functionality in the form of faster conduction velocity. We used these data to develop simulations capable of accurately reproducing the experimental performance. In-depth gauging of the structural disposition (cellular alignment) and intercellular connectivity (C ×43) allowed us to develop an improved computational model able to predict the relationship between cardiac cell alignment and functional performance. This study lays down the path for advancing in the development of in silico tools to predict cardiac biofabricated tissue evolution after generation, and maps the route towards more accurate and biomimetic tissue manufacture
VALS: Virtual Alliances for Learning Society
[EN] VALS has the aims of establishing sustainable methods and processes to build knowledge partnerships between Higher
Education and companies to collaborate on resolving authentic business problems through open innovation mediated by
the use of Open Source Software. Open Source solutions provide the means whereby educational institutions, students,
businesses and foundations can all collaborate to resolve authentic business problems. Not only Open Software provides
the necessary shared infrastructure and collaborative practice, the foundations that manage the software are also hubs,
which channel the operational challenges of their users through to the people who can solve them. This has great
potential for enabling students and supervisors to collaborate in resolving the problems of businesses, but is constrained
by the lack of support for managing and promoting collaboration across the two sectors. VALS should 1) provide the
methods, practice, documentation and infrastructure to unlock this potential through virtual placements in businesses and
other public and private bodies; and 2) pilot and promote these as the “Semester of Code”. To achieve its goals the
project develops guidance for educational institutions, and for businesses and foundations, detailing the opportunities and
the benefits to be gained from the Semester of Code, and the changes to organisation and practice required. A Virtual
Placement System is going to be developed, adapting Apache Melange, and extending it where necessary. In piloting, the
necessary adaptations to practice will be carried out, particularly in universities, and commitments will be established
between problem owners and applicants for virtual placements
Seed storage conditions change the germination pattern of clonal growth plants in Mediterranean salt marshes.
8 páginas, 4 tablas, 8 figuras.The effect of salinity level and extended exposure to different salinity and flooding conditions on germination patterns of three saltmarsh clonal growth plants (Juncus subulatus, Scirpus litoralis, and S. maritimus) was studied. Seed exposure to extended flooding and saline conditions significantly affected the outcome of the germination process in a different, though predictable, way for each species, after favorable conditions for germination were restored. Tolerance of the germination process was related to the average salinity level measured during the growth/germination season at sites where established individuals of each species dominated the species cover. No relationship was found between salinity tolerance of the germination process and seed response to extended exposure to flooding and salinity conditions. The salinity response was significantly related to the conditions prevailing in the habitats of the respective species during the unfavorable (nongrowth/nongermination) season. Our results indicate that changes in salinity and hydrology while seeds are dormant affect the outcome of the seed-bank response, even when conditions at germination are identical.
Because these environmental-history-dependent responses differentially affect seed germination, seedling density, and probably sexual recruitment in the studied and related species, these influences should be considered for wetland restoration and managementFinancial support from the Spanish Ministry of the Environment (MMA, project 05/99) and the Junta de Andalucía (research group 4086)enabled us to carry out the present work.Peer reviewe
Seed storage conditions change the germination pattern of clonal growth plants in Mediterranean salt marshes.
8 páginas, 4 tablas, 8 figuras.The effect of salinity level and extended exposure to different salinity and flooding conditions on germination patterns of three saltmarsh clonal growth plants (Juncus subulatus, Scirpus litoralis, and S. maritimus) was studied. Seed exposure to extended flooding and saline conditions significantly affected the outcome of the germination process in a different, though predictable, way for each species, after favorable conditions for germination were restored. Tolerance of the germination process was related to the average salinity level measured during the growth/germination season at sites where established individuals of each species dominated the species cover. No relationship was found between salinity tolerance of the germination process and seed response to extended exposure to flooding and salinity conditions. The salinity response was significantly related to the conditions prevailing in the habitats of the respective species during the unfavorable (nongrowth/nongermination) season. Our results indicate that changes in salinity and hydrology while seeds are dormant affect the outcome of the seed-bank response, even when conditions at germination are identical.
Because these environmental-history-dependent responses differentially affect seed germination, seedling density, and probably sexual recruitment in the studied and related species, these influences should be considered for wetland restoration and managementFinancial support from the Spanish Ministry of the Environment (MMA, project 05/99) and the Junta de Andalucía (research group 4086)enabled us to carry out the present work.Peer reviewe
Daptomycin plus fosfomycin versus daptomycin monotherapy in treating MRSA: protocol of a multicentre, randomised, phase III trial.
INTRODUCTION: Despite the availability of new antibiotics such as daptomycin, methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia continues to be associated with high clinical failure rates. Combination therapy has been proposed as an alternative to improve outcomes but there is a lack of clinical studies. The study aims to demonstrate that combination of daptomycin plus fosfomycin achieves higher clinical success rates in the treatment of MRSA bacteraemia than daptomycin alone. METHODS AND ANALYSIS: A multicentre open-label, randomised phase III study. Adult patients hospitalised with MRSA bacteraemia will be randomly assigned (1:1) to group 1: daptomycin 10 mg/kg/24 h intravenous; or group 2: daptomycin 10 mg/kg/24 h intravenous plus fosfomycin 2 gr/6 g intravenous. The main outcome will be treatment response at week 6 after stopping therapy (test-of-cure (TOC) visit). This is a composite variable with two values: Treatment success: resolution of clinical signs and symptoms (clinical success) and negative blood cultures (microbiological success) at the TOC visit. Treatment failure: if any of the following conditions apply: (1) lack of clinical improvement at 72 h or more after starting therapy; (2) persistent bacteraemia (positive blood cultures on day 7); (3) therapy is discontinued early due to adverse effects or for some other reason based on clinical judgement; (4) relapse of MRSA bacteraemia before the TOC visit; (5) death for any reason before the TOC visit. Assuming a 60% cure rate with daptomycin and a 20% difference in cure rates between the two groups, 103 patients will be needed for each group (α:0.05, ß: 0.2). Statistical analysis will be based on intention to treat, as well as per protocol and safety analysis. ETHICS AND DISSEMINATION: The protocol was approved by the Spanish Medicines and Healthcare Products Regulatory Agency (AEMPS). The sponsor commits itself to publishing the data in first quartile peer-review journals within 12 months of the completion of the study
Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis
BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
- …