77 research outputs found

    Cosmic Flows on 100 Mpc/h Scales: Standardized Minimum Variance Bulk Flow, Shear and Octupole Moments

    Get PDF
    The low order moments, such as the bulk flow and shear, of the large scale peculiar velocity field are sensitive probes of the matter density fluctuations on very large scales. In practice, however, peculiar velocity surveys are usually sparse and noisy, which can lead to the aliasing of small scale power into what is meant to be a probe of the largest scales. Previously, we developed an optimal ``minimum variance'' (MV) weighting scheme, designed to overcome this problem by minimizing the difference between the measured bulk flow (BF) and that which would be measured by an ideal survey. Here we extend this MV analysis to include the shear and octupole moments, which are designed to have almost no correlations between them so that they are virtually orthogonal. We apply this MV analysis to a compilation of all major peculiar velocity surveys, consisting of 4536 measurements. Our estimate of the BF on scales of ~ 100 Mpc/h has a magnitude of |v|= 416 +/- 78 km/s towards Galactic l = 282 degree +/- 11 degree and b = 6 degree +/- 6 degree. This result is in disagreement with LCDM with WMAP5 cosmological parameters at a high confidence level, but is in good agreement with our previous MV result without an orthogonality constraint, showing that the shear and octupole moments did not contaminate the previous BF measurement. The shear and octupole moments are consistent with WMAP5 power spectrum, although the measurement noise is larger for these moments than for the BF. The relatively low shear moments suggest that the sources responsible for the BF are at large distances.Comment: 13 Pages, 7 figures, 4 tables. Some changes to reflect the published versio

    Higgs decay with monophoton + MET signature from low scale supersymmetry breaking

    Full text link
    We study the decay of a standard model-like Higgs boson into a gravitino and a neutralino, which subsequently decays promptly into another gravitino and a photon. Such a decay can be important in scenarios where the supersymmetry breaking scale is of the order of a few TeV, and in the region of low transverse momenta of the photon, it may provide the dominant contribution to the final state with a photon and two gravitinos. We estimate the relevant standard model backgrounds and the prospects for discovering this Higgs decay through a photon and missing transverse energy signal at the LHC in terms of a simplified model. We also give an explicit model with manifest, but spontaneously broken, supersymmetry in which the usual MSSM soft terms are promoted to supersymmetric operators involving a dynamical goldstino supermultiplet. This model can give rise to a SM-like CP-even neutral Higgs particle with a mass of 125 GeV, without requiring substantial radiative corrections, and with couplings sufficiently large for a signal discovery through the above mentioned Higgs decay channel with the upcoming data from the LHC.Comment: 28 pages, 5 figures, 4 tables; v2: updated to JHEP version, references adde

    Scale setting for alpha_s beyond leading order

    Full text link
    We present a general procedure for incorporating higher-order information into the scale-setting prescription of Brodsky, Lepage and Mackenzie. In particular, we show how to apply this prescription when the leading coefficient or coefficients in a series in the strong coupling alpha_s are anomalously small and the original prescription can give an unphysical scale. We give a general method for computing an optimum scale numerically, within dimensional regularization, and in cases when the coefficients of a series are known. We apply it to the heavy quark mass and energy renormalization in lattice NRQCD, and to a variety of known series. Among the latter, we find significant corrections to the scales for the ratio of e+e- to hadrons over muons, the ratio of the quark pole to MSbar mass, the semi-leptonic B-meson decay width, and the top decay width. Scales for the latter two decay widths, expressed in terms of MSbar masses, increase by factors of five and thirteen, respectively, substantially reducing the size of radiative corrections.Comment: 39 pages, 15 figures, 5 tables, LaTeX2

    Exclusive Signals of an Extended Higgs Sector

    Full text link
    Expectations for the magnitude of Higgs boson signals in standard Higgs search channels at the LHC relative to Standard Model (SM) expectations are investigated within the framework of various types of CP and flavor conserving two Higgs doublet models (2HDMs). Signals of the SM-like Higgs boson in different classes of 2HDM may be parameterized in terms of particular two-dimensional sub-spaces of the general four-dimensional space of Higgs couplings to the massive vector bosons, top quark, bottom quark, and tau lepton. We find fairly strong correlations among the inclusive di-photon channel and the exclusive di-photon and di-tau channels from vector boson fusion or associated production. Order one deviations from SM expectations in some of these channels could provide discriminating power among various types of 2HDMs. The ratio of exclusive di-photon to di-tau channels is particularly sensitive to deviations from SM expectations. We also emphasize that deviations from SM expectations in standard Higgs search channels may imply observable signals of non-SM-like Higgs bosons in some of these same channels, in particular in di-photon and di-vector boson channels. The results cataloged here provide a roadmap for interpreting standard Higgs search channels in the context of 2HDMs.Comment: 24 pages, 14 figures, 3 tables; v2: minor corrections, extended discussion of current Higgs signals; version appearing in JHE

    The Cosmological Constant

    Get PDF
    This is a review of the physics and cosmology of the cosmological constant. Focusing on recent developments, I present a pedagogical overview of cosmology in the presence of a cosmological constant, observational constraints on its magnitude, and the physics of a small (and potentially nonzero) vacuum energy.Comment: 50 pages. Submitted to Living Reviews in Relativity (http://www.livingreviews.org/), December 199

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Search for direct top squark pair production in events with a Z boson, b-jets and missing transverse momentum in s √ = 8 TeV pp collisions with the ATLAS detector

    Get PDF
    A search is presented for direct top squark pair production using events with at least two leptons including a same-flavour opposite-sign pair with invariant mass consistent with the Z boson mass, jets tagged as originating from b-quarks and missing transverse momentum. The analysis is performed with proton–proton collision data at s√=8 TeV collected with the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of 20.3 fb−¹. No excess beyond the Standard Model expectation is observed. Interpretations of the results are provided in models based on the direct pair production of the heavier top squark state (t~2) followed by the decay to the lighter top squark state (t~1) via t~2→Zt~1, and for t~1 pair production in natural gauge-mediated supersymmetry breaking scenarios where the neutralino (χ~10) is the next-to-lightest supersymmetric particle and decays producing a Z boson and a gravitino (G~) via the χ~10→ZG~ process

    Search for supersymmetry in events with large missing transverse momentum, jets, and at least one tau lepton in 20 fb−1 of √s=8 TeV proton-proton collision data with the ATLAS detector

    Get PDF
    A search for supersymmetry (SUSY) in events with large missing transverse momentum, jets, at least one hadronically decaying tau lepton and zero or one additional light leptons (electron/muon), has been performed using 20.3fb−1 of proton-proton collision data at √s= 8 TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed in the various signal regions and 95% confidence level upper limits on the visible cross section for new phenomena are set. The results of the analysis are interpreted in several SUSY scenarios, significantly extending previous limits obtained in the same final states. In the framework of minimal gauge-mediated SUSY breaking models, values of the SUSY breaking scale Λ below 63 TeV are excluded, independently of tan β. Exclusion limits are also derived for an mSUGRA/CMSSM model, in both the R-parity-conserving and R-parity-violating case. A further interpretation is presented in a framework of natural gauge mediation, in which the gluino is assumed to be the only light coloured sparticle and gluino masses below 1090 GeV are excluded

    Searches for heavy long-lived charged particles with the ATLAS detector in proton-proton collisions at √s = 8 TeV

    Get PDF
    Searches for heavy long-lived charged particles are performed using a data sample of 19.1 fb−1 from proton-proton collisions at a centre-of-mass energy of s√ = 8 TeV collected by the ATLAS detector at the Large Hadron Collider. No excess is observed above the estimated background and limits are placed on the mass of long-lived particles in various supersymmetric models. Long-lived tau sleptons in models with gauge-mediated symmetry breaking are excluded up to masses between 440 and 385 GeV for tan β between 10 and 50, with a 290 GeV limit in the case where only direct tau slepton production is considered. In the context of simplified LeptoSUSY models, where sleptons are stable and have a mass of 300 GeV, squark and gluino masses are excluded up to a mass of 1500 and 1360 GeV, respectively. Directly produced charginos, in simplified models where they are nearly degenerate to the lightest neutralino, are excluded up to a mass of 620 GeV. R-hadrons, composites containing a gluino, bottom squark or top squark, are excluded up to a mass of 1270, 845 and 900 GeV, respectively, using the full detector; and up to a mass of 1260, 835 and 870 GeV using an approach disregarding information from the muon spectrometer
    corecore