32 research outputs found

    Cross-reactive probes on Illumina DNA methylation arrays: a large study on ALS shows that a cautionary approach is warranted in interpreting epigenome-wide association studies

    Get PDF
    Illumina DNA methylation arrays are a widely used tool for performing genome-wide DNA methylation analyses. However, measurements obtained from these arrays may be affected by technical artefacts that result in spurious associations if left unchecked. Cross-reactivity represents one of the major challenges, meaning that probes may map to multiple regions in the genome. Although several studies have reported on this issue, few studies have empirically examined the impact of cross-reactivity in an epigenome-wide association study (EWAS). In this paper, we report on cross-reactivity issues that we discovered in a large EWAS on the presence of the C9orf72 repeat expansion in ALS patients. Specifically, we found that that the majority of the significant probes inadvertently cross-hybridized to the C9orf72 locus. Importantly, these probes were not flagged as cross-reactive in previous studies, leading to novel insights into the extent to which cross-reactivity can impact EWAS. Our findings are particularly relevant for epigenetic studies into diseases associated with repeat expansions and other types of structural variation. More generally however, considering that most spurious associations were not excluded based on pre-defined sets of cross-reactive probes, we believe that the presented data-driven flag and consider approach is relevant for any type of EWAS

    Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology

    Get PDF
    Motor neuron–specific microRNA-218 (miR-218) has recently received attention because of its roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons, miR-218 is down-regulated and its mRNA targets are reciprocally up-regulated (derepressed). We further identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity in motor neurons may be susceptible to failure in human ALS, suggesting that miR-218 may be a potential therapeutic target in motor neuron disease

    Project MinE: study design and pilot analyses of a large-scale whole-genome sequencing study in amyotrophic lateral sclerosis

    Get PDF
    The most recent genome-wide association study in amyotrophic lateral sclerosis (ALS) demonstrates a disproportionate contribution from low-frequency variants to genetic susceptibility to disease. We have therefore begun Project MinE, an international collaboration that seeks to analyze whole-genome sequence data of at least 15 000 ALS patients and 7500 controls. Here, we report on the design of Project MinE and pilot analyses of successfully sequenced 1169 ALS patients and 608 controls drawn from the Netherlands. As has become characteristic of sequencing studies, we find an abundance of rare genetic variation (minor allele frequency < 0.1%), the vast majority of which is absent in public datasets. Principal component analysis reveals local geographical clustering of these variants within The Netherlands. We use the whole-genome sequence data to explore the implications of poor geographical matching of cases and controls in a sequence-based disease study and to investigate how ancestry-matched, externally sequenced controls can induce false positive associations. Also, we have publicly released genome-wide minor allele counts in cases and controls, as well as results from genic burden tests

    Structural variation analysis of 6,500 whole genome sequences in amyotrophic lateral sclerosis

    Get PDF
    There is a strong genetic contribution to Amyotrophic lateral sclerosis (ALS) risk, with heritability estimates of up to 60%. Both Mendelian and small effect variants have been identified, but in common with other conditions, such variants only explain a little of the heritability. Genomic structural variation might account for some of this otherwise unexplained heritability. We therefore investigated association between structural variation in a set of 25 ALS genes, and ALS risk and phenotype. As expected, the repeat expansion in the C9orf72 gene was identified as associated with ALS. Two other ALS-associated structural variants were identified: inversion in the VCP gene and insertion in the ERBB4 gene. All three variants were associated both with increased risk of ALS and specific phenotypic patterns of disease expression. More than 70% of people with respiratory onset ALS harboured ERBB4 insertion compared with 25% of the general population, suggesting respiratory onset ALS may be a distinct genetic subtype

    Telomere length analysis in amyotrophic lateral sclerosis using large-scale whole genome sequence data

    Get PDF
    Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of upper and lower motor neurons, leading to progressive weakness of voluntary muscles, with death following from neuromuscular respiratory failure, typically within 3 to 5 years. There is a strong genetic contribution to ALS risk. In 10% or more, a family history of ALS or frontotemporal dementia is obtained, and the Mendelian genes responsible for ALS in such families have now been identified in about 50% of cases. Only about 14% of apparently sporadic ALS is explained by known genetic variation, suggesting that other forms of genetic variation are important. Telomeres maintain DNA integrity during cellular replication, differ between sexes, and shorten naturally with age. Sex and age are risk factors for ALS and we therefore investigated telomere length in ALS. Methods: Samples were from Project MinE, an international ALS whole genome sequencing consortium that includes phenotype data. For validation we used donated brain samples from motor cortex from people with ALS and controls. Ancestry and relatedness were evaluated by principal components analysis and relationship matrices of DNA microarray data. Whole genome sequence data were from Illumina HiSeq platforms and aligned using the Isaac pipeline. TelSeq was used to quantify telomere length using whole genome sequence data. We tested the association of telomere length with ALS and ALS survival using Cox regression. Results: There were 6,580 whole genome sequences, reducing to 6,195 samples (4,315 from people with ALS and 1,880 controls) after quality control, and 159 brain samples (106 ALS, 53 controls). Accounting for age and sex, there was a 20% (95% CI 14%, 25%) increase of telomere length in people with ALS compared to controls (p = 1.1 × 10−12), validated in the brain samples (p = 0.03). Those with shorter telomeres had a 10% increase in median survival (p = 5.0×10−7). Although there was no difference in telomere length between sporadic ALS and familial ALS (p=0.64), telomere length in 334 people with ALS due to expanded C9orf72 repeats was shorter than in those without expanded C9orf72 repeats (p = 5.0×10−4). Discussion: Although telomeres shorten with age, longer telomeres are a risk factor for ALS and worsen prognosis. Longer telomeres are associated with ALS

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Associations of autozygosity with a broad range of human phenotypes

    Get PDF
    In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (F-ROH) for >1.4 million individuals, we show that F-ROH is significantly associated (p <0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: F-ROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44-66%] in the odds of having children. Finally, the effects of F-ROH are confirmed within full-sibling pairs, where the variation in F-ROH is independent of all environmental confounding.Peer reviewe

    Quantitative studies of DNA methylation and gene expression in neuropsychiatric traits

    No full text
    Research has shown that besides genes and environment, epigenetic factors are also playing a role in the development of traits and diseases. Epigenetic changes do not affect the underlying DNA sequence, but affect its structure and is thought to play a major role in regulation of gene expression. DNA methylation, one of the most-characterized epigenetic mechanisms, involves the attachment of a methyl group to the cytosine of a cytosine-phosphate-guanine (CpG) pair. CpG sites often cluster in promoter regions of genes, which are important for control of gene expression. We hypothesize that differences in DNA methylation is involved in disease susceptibility including that of schizophrenia. Schizophrenia is a neuropsychiatric disorder affecting ~1% of the population. The disorder is characterized by positive symptoms (e.g. hallucinations, delusions), and negative symptoms (e.g. social withdrawal and poverty of speech). Despite its high heritability estimate of roughly 80%, only a small proportion can be explained by currently known susceptibility loci. In this thesis, we aimed to study different layers of genomic data (genetic variation, DNA methylation and gene expression) simultaneously in order to get more insight into the biological mechanisms underlying schizophrenia. First, we studied the association between DNA methylation, gene expression, and genetic variation in whole blood of healthy controls. We observed complex and variable patterns of genetic regulation of DNA methylation and gene expression. Secondly, we used the results from a large schizophrenia genome-wide association study to select loci for study of differential gene expression in cases versus controls. We identified three genes of which its expression is under genetic control of disease-associated alleles and for which we also observe different levels of expression between cases and controls. In our third study, we combined the differential gene expression data with DNA methylation profiles. We confirmed that single nucleotide polymorphisms (SNPs), that regulate differentially methylated CpG sites in schizophrenia, are enriched with disease-associated alleles. We were able to provide a specific molecular epigenetic mechanism for at least one known disease locus. In a different study we examined the association between genetic variation and CpG methylation using 22 nuclear schizophrenia families. We observed extensive interaction between the genetic variation and DNA methylation levels, which includes the identification of ‘variation SNPs’ that not so much affect the median level but rather the variance of CpG methylation levels. Since schizophrenia is a brain disorder, we also examined methylation levels from brain samples of patients and control subjects. One of the most significant loci linked to schizophrenia includes micro-RNA137 (miRNA-137). miRNAs are small non-coding RNA molecules and key players in regulation of gene expression. Using these brain samples, we examined the relation between miRNA-137 and DNA methylation. Our findings suggest a possible link between this miRNA and serotonergic and glutamatergic pathways. To conclude, we described genome-wide methods to combine and analyse different types of genomic information. Integrating methylation data with gene expression and genotype data led to the identification of loci that possibly contribute to the susceptibility to schizophrenia

    Common knowledge in email exchanges

    No full text
    We consider a framework in which a group of agents communicates by means of emails, with the possibility of replies, forwards and blind carbon copies (BCC). We study the epistemic consequences of such email exchanges by introducing an appropriate epistemic language and semantics. This allows us to determine when a group of agents acquires common knowledge of the formula expressing that an email was sent. We also show that in our framework from the epistemic point of view the BCC feature of emails cannot be simulated using messages without BCC recipients. Finally, we clarify the notion of a causal relationship between emails using the concept of properly terminating email exchanges
    corecore