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Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative

disease characterized by the loss of upper and lower motor neurons, leading

to progressive weakness of voluntary muscles, with death following from

neuromuscular respiratory failure, typically within 3 to 5 years. There is a

strong genetic contribution to ALS risk. In 10% or more, a family history

of ALS or frontotemporal dementia is obtained, and the Mendelian genes

responsible for ALS in such families have now been identified in about

50% of cases. Only about 14% of apparently sporadic ALS is explained by

known genetic variation, suggesting that other forms of genetic variation

are important. Telomeres maintain DNA integrity during cellular replication,

differ between sexes, and shorten naturally with age. Sex and age are

risk factors for ALS and we therefore investigated telomere length in

ALS.

Methods: Samples were from Project MinE, an international ALS whole

genome sequencing consortium that includes phenotype data. For validation

we used donated brain samples from motor cortex from people with ALS and

controls. Ancestry and relatedness were evaluated by principal components

analysis and relationship matrices of DNA microarray data. Whole genome

sequence data were from Illumina HiSeq platforms and aligned using the Isaac

pipeline. TelSeq was used to quantify telomere length using whole genome

sequence data. We tested the association of telomere length with ALS and

ALS survival using Cox regression.

Results: There were 6,580 whole genome sequences, reducing to 6,195

samples (4,315 from people with ALS and 1,880 controls) after quality

control, and 159 brain samples (106 ALS, 53 controls). Accounting for

age and sex, there was a 20% (95% CI 14%, 25%) increase of telomere

length in people with ALS compared to controls (p = 1.1 × 10−12),

validated in the brain samples (p = 0.03). Those with shorter telomeres

had a 10% increase in median survival (p = 5.0×10−7). Although there

was no difference in telomere length between sporadic ALS and familial

ALS (p=0.64), telomere length in 334 people with ALS due to expanded

C9orf72 repeats was shorter than in those without expanded C9orf72 repeats

(p = 5.0×10−4).

Discussion: Although telomeres shorten with age, longer telomeres are a risk

factor for ALS and worsen prognosis. Longer telomeres are associated with

ALS.

KEYWORDS

amyotrophic lateral sclerosis (ALS), telomere–genetics, whole genome sequence

(WGS), genomics, bigdata, MND–motor neuron disorders

Frontiers in Cellular Neuroscience 02 frontiersin.org



Al Khleifat et al. 10.3389/fncel.2022.1050596

Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative

disease affecting motor neurons in the brain and spinal cord

resulting in progressive paralysis and death, within three to

five years, typically due to respiratory failure (Brown and Al-

Chalabi, 2017; Hardiman et al., 2017). The first symptoms

of weakness can occur in the bulbar innervated muscles,

manifesting as difficulty with speech or swallowing, or in the

spinal innervated muscles, manifesting as limb weakness or

breathing difficulty. About 5% may have a frank frontotemporal

dementia, and frontotemporal impairment is seen in up to 80%

of people by the time King’s Stage 4 disease is reached (Roche

et al., 2012; Crockford et al., 2018).

The last decade has seen substantial advances in

our understanding of the genomic basis of ALS (van

Rheenen et al., 2021; Hop et al., 2022) but a significant

proportion of the genetic contribution to risk remains

unexplained. This hidden heritability may be harbored in

other types of genomic variation as well as in rare variants

that may be unique to an affected individual or family

(Al-Chalabi et al., 2010; McLaughlin et al., 2015).

Telomeres are repeated TTAGGG nucleotide sequences

located at the ends of chromosomes and exist to maintain

chromosomal structural integrity during cellular replication.

They shorten naturally with age and differ in average length

between the sexes (Muzumdar and Atzmon, 2012; Kong et al.,

2013; Gardner et al., 2014); age and sex are also risk factors

for ALS (McCombe and Henderson, 2010; Al-Chalabi and

Hardiman, 2013; Westeneng et al., 2018). Telomere length is a

marker for aging, chromosomal instability and DNA damage,

and might therefore be relevant as a risk factor for ALS

(Murnane, 2006; Conomos et al., 2012; Xu et al., 2013; Marzec

et al., 2015).

Previously, in a pilot study in a UK cohort, we showed that

longer telomeres might be associated with ALS when compared

to age and sex-matched controls (Al Khleifat et al., 2019). We

therefore sought to explore this finding in detail, using whole-

genome sequence data from the Project MinE consortium

(van Rheenen et al., 2018), a large international ALS genomics

collaboration.

Materials and methods

Data sources and data extraction

Blood samples

Samples were from the international Project MinE whole

genome sequencing consortium and derived from seven

countries: the USA, Ireland, Belgium, the Netherlands, Spain,

Turkey, and the United Kingdom (van Rheenen et al., 2018).

DNA was isolated from venous blood using standard

methods. The DNA concentrations were set at 100 ng/ul

as measured by a fluorimeter with the PicoGreen R© dsDNA

quantitation assay. DNA integrity was assessed using gel

electrophoresis.

Post-mortem samples

Post-mortem motor cortex was from the MRC London

Neurodegenerative Diseases Brain Bank based at the Institute

of Psychiatry, Psychology and Neuroscience, King’s College

London. Tissue was flash frozen stored at −80◦C. 100 mg

tissue blocks were excised. DNA was isolated from the same

tissue block and sequenced. The study cohort consisted of

64 people with apparently sporadic ALS and 53 controls

with no known neurological disease (controls below

Hyperphosphorylated tau (HP-τ) in human brain tissue

and BNE\Braak stage 2).

The 100 mg tissue blocks were divided to allow DNA

purification. For each sample, a 25 mg tissue block for DNA

was homogenized using a Qiagen PowerLyzer 24 Homogenizer.

DNA was purified from the homogenate using the standard

protocol from Qiagen’s DNeasy Blood and Tissue Mini Kit.

DNA was quantified using PicoGreen (Quant-iTTM PicoGreen R©

dsDNA Reagent, ThermoFisher Scientific) and measured using

a Spectromax Gemini XPS (Molecular Devices).

Library preparation and DNA
sequencing

Library preparation was performed using the Illumina DNA

Sample Preparation HT Kit alongside the Illumina SeqLab DNA

PCR-Free Library Prep Guide. Libraries were then quantified

using qPCR and evaluated using gel electrophoresis. All samples

were sequenced using Illumina’s FastTrack services (San Diego,

CA, USA). Some blood-derived DNA samples were sequenced

using the Illumina HiSeq 2000 platform. Sequencing was 100 bp

paired-end performed using PCR-free library preparations and

targeted ∼40x coverage across each sample. Remaining blood-

derived and all brain-derived DNA libraries were clustered onto

flow cells using the Illumina cBot System, as per cBot System

Guide using Illumina HiSeq X HD Paired End Cluster Kit

reagents and sequenced on an Illumina HiSeqX with 151 bp

paired-end runs using independent flow cell lanes and with a

target minimum of 30x average coverage per sample. Binary

sequence alignment/map formats (BAM) were generated for

each individual. All the genomes were aligned with Isaac

(Illumina) to hg19. The details of the Isaac alignment and

variant calling pipelines are discussed in Project MinE design

(van Rheenen et al., 2018) and the Isaac protocol (Raczy et al.,

2013).
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Determination of telomere length

TelSeq (Ding et al., 2014) was used to quantify telomere

length using whole genome sequence data. Telomere lengths

were estimated from reads, defined as repeats ofmore than seven

TTAGGGmotifs.

Statistical analysis

The effect of telomere length on ALS risk was tested using a

multivariable linear regression model. To account for different

sequencing platforms and population stratification, principal

components of ancestry, center and technology platform were

included as covariates. To assess the model, Pearson’s chi-

squared test was used. Because telomere length correlates with

age, we performed an additional test to examine the possibility

that survival bias could affect the results. To do this, we also

performed the analysis restricted to the subgroup of people

with ALS onset below the median cohort age (62 years). As

brain is composed of neurons which do not divide, as well as

glia which do, we expected that the average telomere length

in brain would be longer than in blood. Furthermore, nervous

tissue is the target of the disease process rather than blood. We

therefore additionally tested the effect of age on telomere length

in brain tissue.

To determine if telomeres are lengthened in ALS, or simply

shorten less rapidly than in controls, we analysed the effect

of age on telomere length in each group using multivariable

linear regression.

To assess the effect of covariates on telomere length affecting

survival, we used Cox regression, controlling for age, sex and

site of disease onset (bulbar or spinal), population stratification,

principal components, center and sequencing platforms.

Repeat primed PCR and Expansion Hunter-v2.5.1

(Dolzhenko et al., 2017) were used to assay the hexanucleotide

repeat expansion in the C9orf72 gene since this is a known risk

factor for ALS and associates with survival.

Statistical tests were performed using IBM SPSS Statistics

24.0 (SPSS Inc., Armonk, NY, USA), and RStudio, R Foundation

for Statistical Computing 3.4.1 (RStudio, Vienna, Austria).

Quality control

Quality control was performed separately on the genotyped

data of each population as reported previously (van Rheenen

et al., 2016; Supplementary Appendix 1).

Ethical approval

Informed consent was obtained from all participants in this

project according to the ethical approval at each participating

Project MinE site as previously described (van Rheenen et al.,

2018).

Results

There were 6,580 whole genome sequences (4,515 from

people with ALS and 2,065 from controls), reducing to 6,195

[4,315 (95.6%) from people with ALS and 1,880 (91%) from

controls] after quality control, with minimum ∼25x coverage

across each sample. The set was enriched for apparently sporadic

ALS [4,236 compared with 79 with familial ALS (FALS)]. The

male-female ratio was 2:1. Overall, 22 had ALS-frontotemporal

dementia (ALS-FTD). Phenotypically, 37 had pure progressive

bulbar palsy (PBP) and 68 and progressive muscular atrophy.

There were 1,908 sequenced using the HiSeq2000 platform

and 4,287 sequenced using the HiSeqX Illumina platform

(Table 1). There were 344 people carrying an expanded C9orf72

hexanucleotide repeat, 334 with ALS and 10 without symptoms.

The mean telomere length in people with ALS was 5.5 kb,

and in controls, 5.38 kb (Figure 1). Multivariable linear

regression accounting for sex and age as covariates showed

a mean 20% (95% CI 14, 25%) longer telomere length in

people with ALS compared to controls (p = 1.1 × 10−12).

Covariate analysis showed that regardless of disease status,

females (p = 2.42× 10−5) and younger people (p = 1.2× 10−16)

had on average longer telomeres (Table 2), confirming the

results of earlier studies that telomere length reduces with age

and females have on average longer telomeres.

To assess if the observed longer telomere length in

apparently sporadic ALS is also seen in familial ALS, we assessed

telomere length in 79 people, not included in the main analysis,

with a family history of ALS in a first degree relative (FALS).

Multivariable linear regression after correcting for age and sex

again showed a longer average telomere length in people with

FALS than in controls (p = 2.0 × 10−16).

Examining the effect of age on telomere length in ALS and

controls separately, showed that the rate of shortening by age

is slower in ALS than in controls, suggesting it is not an active

lengthening of telomeres in ALS (0.022% per year, p < 0.0001

TABLE 1 Detailed demographic features of the study population.

Cohort Sample Case Control Female Male

Belgium 548 368 180 209 339

Ireland 403 267 136 161 242

Netherlands 2894 1859 1035 1182 1712

Spain 338 233 105 145 193

Turkey 223 148 75 87 136

United Kingdom 1402 1124 278 603 799

United States 387 316 71 153 234

Total 6195 4315 1880 2540 3655
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FIGURE 1

Mean telomere length by age (A), sex (B), and disease status (C).

Purple bars indicate 95% confidence intervals.

vs. 0.012% per year, p < 0.0001) and also arguing against the

possibility that telomeres are longer to start with in people who

will later develop ALS. The rate of shortening was different

TABLE 2 Telomere length comparison between people with

amyotrophic lateral sclerosis (ALS) and healthy controls using a

generalized linear model.

Estimate SD of estimate P-value

Age (per year) −2% 0.02 1.1 × 10−16

Sex (male vs.

female)

−8% 0.03 2.42 × 10−5

Case-control

status (controls

vs. cases)

−29% 0.02 1.1 × 10−12

in males and females, with females showing a faster rate of

shortening than males (Supplementary Figure 1).

In an analysis exploring survival bias as an explanation

for our results, we restricted testing to those younger than

the median age (62 years). Multivariable linear regression

accounting for sex and age still showed that telomeres

were longer in people with ALS compared to controls

(p = 8.12 × 10−12) with mean telomere length in people with

ALS, 5.8 kb, and in controls, 5.5 kb. To ensure that telomere

length analysis was not biased by population effects, we excluded

the UK, a population we used previously for discovery analysis,

and using a subset of samples the association was still observed

(p = 6.6 × 10−9).

We compared telomere length in 334 people with ALS

with C9orf72 repeat expansion against people with ALS with

confirmed non-expanded C9orf72 status. Multivariable linear

regression showed that the telomere was shorter in expansion

carriers (p= 5.0× 10−4) (Figure 2A andTable 3). AlthoughALS

C9orf72 expansion carriers had a shorter telomere length than

non-expansion carriers, telomere length was still longer in those

carrying a C9orf72 repeat expansion than controls (p = 0.001)

(Figure 2B).

We therefore assessed the relationship between the

estimated number of telomere repeats and estimated number of

C9orf72 repeats using ExpansionHunter in 1,589 samples from

the UK. Multivariable linear regression showed that the number

of telomere repeats is associated negatively with C9orf72 repeat

expansion size (p = 0.003) supporting the previous results.

To assess if the relationship between C9orf72 repeat

expansion and telomere repeat size was specific to C9orf72-

mediated ALS, we ran ExpansionHunter on three ALS

genes which also contain disease-associated repeat expansions:

ATXN1, ATXN2, and NIPA1. There was no difference in

telomere length observed between expansion carriers and non-

expansion carriers for any of these genes.

Cox regression analysis showed that people with ALS

with telomere length less than 5.3 Kb had a 10% increase in

median survival compared with those with longer telomeres

(p = 5.0 × 10−7) after correcting for age, sex, site of onset,

C9orf72 status and principal components of ancestry.
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FIGURE 2

(A) Telomere length comparison between 334 people with ALS carrying an expanded C9orf72 repeat against people with ALS not carrying an

expansion. Multivariable linear regression shows that the telomere is shorter in those carrying a C9orf72 expansion compared with age and sex

matched disease controls not carrying an expansion (p = 5.0 × 10-4). (B) Telomere length comparison between 334 people with ALS with

C9orf72 repeat expansion against 10 healthy individuals with confirmed expanded C9orf72 status. Multivariable linear regression shows that the

telomere is longer in people with ALS with C9orf72 repeat expansion (p = 0.05). Telomere length reported in kilobases (kb). Red bars indicate

95% confidence intervals.

To validate our findings in a different tissue we used 159

post-mortem brain samples, 106 from people with apparently

sporadic ALS and 53 controls. The male-female ratio was 2:1.

The mean telomere length in people with ALS was 6.8 kb, and

in controls, 6.56 Kb, not taking into account gender or age.

Multivariable linear regression accounting for these covariates

showed that telomere length in people with ALS was longer by

mean 29% (95% CI 30, 55%) compared with controls (p = 0.03).

Discussion

Using a large disease-specific whole genome sequencing

dataset, we have shown that longer telomeres are associated

with ALS, confirming initial findings from a pilot study (Al

Khleifat et al., 2019). We were additionally able to show that

our findings are likely a result of less rapid shortening of

telomeres being associated with ALS, rather than active telomere

lengthening in ALS. In keeping with expectations, we also found

that mean telomere length was on average longer in females, and

in all samples, shortened with increasing age. The association

of longer telomeres with apparently sporadic ALS was also seen

in FALS, supporting the notion that familial and sporadic ALS

are not mutually exclusive categories but rather a spectrum (Al-

Chalabi and Hardiman, 2013; Al-Chalabi et al., 2014; Chiò et al.,

2018; Mehta et al., 2018). Furthermore, telomere length was

inversely correlated with C9orf72 repeat expansion size.

Telomere elongation phenomena are well-documented but

far less well-understood than telomere shortening phenomena

(Bryan et al., 1995; Cesare and Reddel, 2010; Arora and Azzalin,

2015; Haycock et al., 2017). While telomere shortening is

typically seen in cancers, telomere elongation can occur in

cancers of the nervous system, and for example, is seen in 25%

of primary brain tumors, in glioblastomamultiforme and in 10%

of neuroblastomas (Bryan et al., 1997; Hakin-Smith et al., 2003;

Henson et al., 2005; Durant, 2012; Boutou et al., 2013).

In general, cancers in which cells have long telomeres are

resistant to therapy and carry a poor prognosis (Haycock

et al., 2017). Telomere elongation has also been associated with

schizophrenia (Nieratschker et al., 2013; Zhang et al., 2018),

a disorder that genetically overlaps with ALS (McLaughlin

et al., 2017). Additionally, longer telomeres are also reported in

Parkinson’s disease and Lewy body dementia blood and brain

(Asghar et al., 2022).

We found that pathologically expanded C9orf72 repeats

are negatively associated with telomere repeat length, so that

people with expanded C9orf72 repeats had shorter telomeres

on average. C9orf72 gene repeat expansion is the most

frequent genetic cause of ALS and of the related condition,

frontotemporal dementia (Shatunov et al., 2010; Smith et al.,

2013; Hardiman et al., 2017; Iacoangeli et al., 2019). A possible

explanation for the negative association is in the liability

TABLE 3 Telomere length comparison between 552 people with

amyotrophic lateral sclerosis (ALS) with a C9orf72 repeat expansion

and 907 people with ALS with normal C9orf72 repeat length using a

multivariable linear regression.

Estimate SD of estimate P-value

Age (per year) −2% 0.02 1.1 × 10−16

Sex (male vs. female) −15% 0.03 2.42 × 10−5

C9orf72 (expanded) −27% 0.02 5.0 × 10−4
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threshold model of disease. Those people who already have

a high liability to ALS do not need the additional liability of

longer telomeres and so on average would appear to have shorter

telomeres. Alternatively, those in the higher risk group (non-

repeat expansion carriers) need a greater contribution from

other sources of disease liability and so have longer telomere

repeats. Against this explanation is the observation that other

gene variants that predispose to ALS risk such as intermediate

ATXN2 repeat expansions, do not show any association with

telomere length, and neither do people with familial ALS. The

explanation might therefore lie in the C9orf72 repeat expansion

itself. Both telomeres and large C9orf72 repeats have a tendency

to fold into structures called G quadruplexes (Fratta et al., 2012;

Grigg et al., 2014). G quadruplex structures have important roles

in DNA replication, recombination and telomere maintenance

(Millevoi et al., 2012; Bryan, 2019). Although there have been

several studies of the G quadruplexes formed by C9orf72

repeat expansion, the relationship between C9orf72 repeats and

other G quadruplexes such as telomeres is not documented at

population level and has not been well-characterized in vivo

(Zhang et al., 2019).

Some genetic variations that contribute to ALS risk also

worsen prognosis. This is seen in carriers of the C9orf72 repeat

expansion mutation, those carrying the UNC13A homozygous

risk genotype, and for some variants of the SOD1 gene for

example. In keeping with that pattern, we have found that longer

telomere length is associated with ALS risk as well as with worse

prognosis, with those with the shortest telomeres having a 10%

increase in survival.

The genetic landscape of ALS is one of some monogenic

causes, several gene variations that substantially but not

dramatically increase risk, and a polygenic component. For

those with a monogenic basis of their disease, the variable

and age-dependent penetrance seen is likely because of the

contribution of other factors to risk (Al-Chalabi and Hardiman,

2013; Al-Chalabi et al., 2014; Chiò et al., 2018; Garton et al.,

2021). Based on these findings, telomere length could be such

a factor.

The main limitation of this study is that we did not directly

measure telomere length using Southern blotting, but estimated

it using whole genome sequence data. The method we have

used, TelSeq, was recently used to estimate telomere length in

75,000 whole genome sequences. Comparing the performance

of TelSeq with other bioinformatics tools such as Computel, the

estimates of telomere length were highly correlated between the

bioinformatics methods and with Southern blot results, with the

advantage that TelSeq had a faster processing time (Taub et al.,

2019), although it is not possible to draw conclusions about the

exact length of a telomere. Other studies have also shown a good

correlation between TelSeq telomere length estimates, Southern

blotting and Q-PCR (Ding et al., 2014; Cook et al., 2016). With

this in mind, different sequencing technologies might generate

different telomere length estimates because of differences in

library preparation and platform (Ma, 1995; Aviv et al., 2011).

To overcome this potential weakness, we have used the same

industry-leading sequencing platform for all samples, as well as

designing the study to minimize batch effects by having cases

and controls sharing the same sequencing plate. Our study has

the advantage of a large sample size of more than 4,500 cases, far

larger than for previous reports.

We have shown that despite being an age-related, male-

predominant condition, ALS is associated with longer telomere

lengths in blood-derived and in brain-derived DNA.
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