136 research outputs found
Estimation of Aquaporin-4 levels in cerebral cortex and its role in brain edema and neurological function in an automated cortical cryoinjuy model in mice
INTRODUCTION:
In brain, water is continuously shunted between blood-brain and cerebrospinal fluid (CSF)-brain interface. Dysfunction in water homeostasis has deleterious effects on brain function. Cerebral oedema is an inevitable consequence of any significant brain injury and is a common cause for morbidity and mortality in neurosurgical practice. Cerebral oedema following traumatic brain injury causes raised intracranial pressure, secondary neuronal damage, brain herniation and death. Osmotic agents, diuretics and steroids are being used in patients to control cerebral oedema following brain surgery, tumors, trauma and stroke. Despite this wide variety of agents available, cerebral oedema cannot be treated successfully in a proportion of patients and several mechanisms of oedema formation have not been optimally addressed.
AIM / OBJECTIVES:
1. To study the spatial and temporal profile of expression of aquaporin-4 (AQP-4) at the injury site and distant sites from the injury site at 24, 48, 72 hours post injury following cerebral cortical cryoinjury in mice.
2. To correlate the AQP-4 levels at site of injury with the neurological function at various different time intervals following injury.
MATERIAL AND METHODS:
Young male adult Swiss albino mice weighing 30 to 35 gms were used. Twelve animals each were sacrificed at time points of 24 hours, 48 hours and 72 hours post injury. Brains from six normal mice were used for determining the water content as well as AQP4 distribution in the normal brain. Cold injury (18) was created by a automated cryoinjury model. Sham injury (18) was created by doing a craniotomy and placement of non pre-cooled copper cylinder on dura. Percentage water content was calculated and functional outcome was measured using NSS and RR score. AQP-4 expression was determined using western blotting. Data were expressed as mean ± standard deviation. The percentage water content and Neurological Severity Score (NSS) and RR score was compared between the two study groups using Mann-Whitney U test. P-values of less than 0.05 were considered statistically significant. All statistical analysis was done using SPSS Version 16.0 (IBM, USA).
RESULTS:
There was increased percentage water content in the injury group as compared to sham group at the end of 24 hours which correlated with poor neurological outcome as measured by the NSS and RR score which were significant at the end of 24 hours. There was increased expression of AQP-4 and its isoforms at the end of 24 hours at the site of injury and distant sites of injury in the injury group. This correlated with increased water content and poor neurological outcome.
CONCLUSIONS:
There is a 1.4 fold increase in AQP-4 expression in the injured brain as compared to sham as well as controls at the first 24 hours following injury that could be correlated with deterioration in functional outcome as well as development of brain oedema. Over the next 48 hours, there was partial functional recovery with reduction in AQP-4 expression. Though there was increase in the percentage water content at the end of 48 and 72 hours there was no statistically significant increase in the water content as that seen at the end of 24 hours. Hence newer strategies to target AQP-4 during the early hours of traumatic brain injury could lead to better treatment of cerebral oedema following a traumatic brain injury. However we need more studies to substantiate our findings
CANDELS: The progenitors of compact quiescent galaxies at z~2
We combine high-resolution HST/WFC3 images with multi-wavelength photometry
to track the evolution of structure and activity of massive (log(M*) > 10)
galaxies at redshifts z = 1.4 - 3 in two fields of the Cosmic Assembly
Near-infrared Deep Extragalactic Legacy Survey (CANDELS). We detect compact,
star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star
formation rates qualify them as likely progenitors of compact, quiescent,
massive galaxies (cQGs) at z = 1.5 - 3. At z > 2 most cSFGs have specific
star-formation rates (sSFR = 10^-9 yr^-1) half that of typical, massive SFGs at
the same epoch, and host X-ray luminous AGN 30 times (~30%) more frequently.
These properties suggest that cSFGs are formed by gas-rich processes (mergers
or disk-instabilities) that induce a compact starburst and feed an AGN, which,
in turn, quench the star formation on dynamical timescales (few 10^8 yr). The
cSFGs are continuously being formed at z = 2 - 3 and fade to cQGs by z = 1.5.
After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs.
Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs
in size, while less-gas-rich mergers and other secular mechanisms shepherd
(larger) SFGs as later arrivals to the red sequence. In summary, we propose two
evolutionary scenarios of QG formation: an early (z > 2), fast-formation path
of rapidly-quenched cSFGs that evolve into cQGs that later enlarge within the
quiescent phase, and a slow, late-arrival (z < 2) path for SFGs to form QGs
without passing through a compact state.Comment: Submitted to the Astrophysical Journal Letters, 6 pages, 4 figure
2021 ISHNE/ HRS/ EHRA/ APHRS collaborative statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals: From the International Society for Holter and Noninvasive Electrocardiology/Heart Rhythm Society/European Heart Rhythm Association/Asia Pacific Heart Rhythm Society.
This collaborative statement from the International Society for Holter and Noninvasive Electrocardiology/ Heart Rhythm Society/ European Heart Rhythm Association/ Asia Pacific Heart Rhythm Society describes the current status of mobile health ("mHealth") technologies in arrhythmia management. The range of digital medical tools and heart rhythm disorders that they may be applied to and clinical decisions that may be enabled are discussed. The facilitation of comorbidity and lifestyle management (increasingly recognized to play a role in heart rhythm disorders) and patient self-management are novel aspects of mHealth. The promises of predictive analytics but also operational challenges in embedding mHealth into routine clinical care are explored
CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey - The Hubble Space Telescope Observations, Imaging Data Products and Mosaics
This paper describes the Hubble Space Telescope imaging data products and
data reduction procedures for the Cosmic Assembly Near-IR Deep Extragalactic
Legacy Survey (CANDELS). This survey is designed to document the evolution of
galaxies and black holes at , and to study Type Ia SNe beyond
. Five premier multi-wavelength sky regions are selected, each with
extensive multiwavelength observations. The primary CANDELS data consist of
imaging obtained in the Wide Field Camera 3 / infrared channel (WFC3/IR) and
UVIS channel, along with the Advanced Camera for Surveys (ACS). The
CANDELS/Deep survey covers \sim125 square arcminutes within GOODS-N and
GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a
total of \sim800 square arcminutes across GOODS and three additional fields
(EGS, COSMOS, and UDS). We summarize the observational aspects of the survey as
motivated by the scientific goals and present a detailed description of the
data reduction procedures and products from the survey. Our data reduction
methods utilize the most up to date calibration files and image combination
procedures. We have paid special attention to correcting a range of
instrumental effects, including CTE degradation for ACS, removal of electronic
bias-striping present in ACS data after SM4, and persistence effects and other
artifacts in WFC3/IR. For each field, we release mosaics for individual epochs
and eventual mosaics containing data from all epochs combined, to facilitate
photometric variability studies and the deepest possible photometry. A more
detailed overview of the science goals and observational design of the survey
are presented in a companion paper.Comment: 39 pages, 25 figure
CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey
The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS)
is designed to document the first third of galactic evolution, over the
approximate redshift (z) range 8--1.5. It will image >250,000 distant galaxies
using three separate cameras on the Hubble Space Telescope, from the
mid-ultraviolet to the near-infrared, and will find and measure Type Ia
supernovae at z>1.5 to test their accuracy as standardizable candles for
cosmology. Five premier multi-wavelength sky regions are selected, each with
extensive ancillary data. The use of five widely separated fields mitigates
cosmic variance and yields statistically robust and complete samples of
galaxies down to a stellar mass of 10^9 M_\odot to z \approx 2, reaching the
knee of the ultraviolet luminosity function (UVLF) of galaxies to z \approx 8.
The survey covers approximately 800 arcmin^2 and is divided into two parts. The
CANDELS/Deep survey (5\sigma\ point-source limit H=27.7 mag) covers \sim 125
arcmin^2 within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and
three additional fields (EGS, COSMOS, and UDS) and covers the full area to a
5\sigma\ point-source limit of H \gtrsim 27.0 mag. Together with the Hubble
Ultra Deep Fields, the strategy creates a three-tiered "wedding cake" approach
that has proven efficient for extragalactic surveys. Data from the survey are
nonproprietary and are useful for a wide variety of science investigations. In
this paper, we describe the basic motivations for the survey, the CANDELS team
science goals and the resulting observational requirements, the field selection
and geometry, and the observing design. The Hubble data processing and products
are described in a companion paper.Comment: Submitted to Astrophysical Journal Supplement Series; Revised
version, subsequent to referee repor
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in July 2014. It pursues three core programs: APOGEE-2,MaNGA, and eBOSS. In addition, eBOSS contains two major subprograms: TDSS and SPIDERS. This paper describes the first data release from SDSS-IV, Data Release 13 (DR13), which contains new data, reanalysis of existing data sets and, like all SDSS data releases, is inclusive of previously released data. DR13 makes publicly available 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA,the first data released from this survey. It includes new observations from eBOSS, completing SEQUELS. In addition to targeting galaxies and quasars, SEQUELS also targeted variability-selected objects from TDSS and X-ray selected objects from SPIDERS. DR13 includes new reductions ofthe SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification. DR13 releases new reductions of the APOGEE-1data from SDSS-III, with abundances of elements not previously included and improved stellar parameters for dwarf stars and cooler stars. For the SDSS imaging data, DR13 provides new, more robust and precise photometric calibrations. Several value-added catalogs are being released in tandem with DR13, in particular target catalogs relevant for eBOSS, TDSS, and SPIDERS, and an updated red-clump catalog for APOGEE.This paper describes the location and format of the data now publicly available, as well as providing references to the important technical papers that describe the targeting, observing, and data reduction. The SDSS website, http://www.sdss.org, provides links to the data, tutorials and examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ~6-year operations of SDSS-IV.PostprintPeer reviewe
MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision
Prior to the deep learning era, shape was commonly used to describe the
objects. Nowadays, state-of-the-art (SOTA) algorithms in medical imaging are
predominantly diverging from computer vision, where voxel grids, meshes, point
clouds, and implicit surface models are used. This is seen from numerous
shape-related publications in premier vision conferences as well as the growing
popularity of ShapeNet (about 51,300 models) and Princeton ModelNet (127,915
models). For the medical domain, we present a large collection of anatomical
shapes (e.g., bones, organs, vessels) and 3D models of surgical instrument,
called MedShapeNet, created to facilitate the translation of data-driven vision
algorithms to medical applications and to adapt SOTA vision algorithms to
medical problems. As a unique feature, we directly model the majority of shapes
on the imaging data of real patients. As of today, MedShapeNet includes 23
dataset with more than 100,000 shapes that are paired with annotations (ground
truth). Our data is freely accessible via a web interface and a Python
application programming interface (API) and can be used for discriminative,
reconstructive, and variational benchmarks as well as various applications in
virtual, augmented, or mixed reality, and 3D printing. Exemplary, we present
use cases in the fields of classification of brain tumors, facial and skull
reconstructions, multi-class anatomy completion, education, and 3D printing. In
future, we will extend the data and improve the interfaces. The project pages
are: https://medshapenet.ikim.nrw/ and
https://github.com/Jianningli/medshapenet-feedbackComment: 16 page
Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
- …