943 research outputs found
The Role of Innate APOBEC3G and Adaptive AID Immune Responses in HLA-HIV/SIV Immunized SHIV Infected Macaques
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
BRCA1 tumours correlate with a HIF-1α phenotype and have a poor prognosis through modulation of hydroxylase enzyme profile expression
BACKGROUND: There are limited data regarding the hypoxia pathway in familial breast cancers. We therefore performed a study of hypoxic factors in BRCA1, BRCA2 and BRCAX breast cancers. METHODS: Immunoperoxidase staining for HIF-1alpha, PHD1, PHD2, PHD3, VEGF and FIH was carried out in 125 (38 BRCA1, 33 BRCA2 and 54 BRCAX) breast carcinomas. These were correlated with clinicopathological parameters and the intrinsic breast cancer phenotypes. RESULTS: BRCA1 tumours correlated with positivity for HIF-1alpha (P=0.008) and negativity for PHD3 (P=0.037). HIF-1alpha positivity (P=0.001), PHD3 negativity (P=0.037) and nuclear FIH negativity (P=0.011) was associated with basal phenotype. HIF-1alpha expression correlated with high tumour grade (P=0.009), negative oestrogen receptor (ER) status (P=0.001) and the absence of lymph node metastasis (P=0.028). Nuclear FIH expression and PHD3 correlated with positive ER expression (P=0.024 and P=0.035, respectively). BRCA1 cancers with positive HIF-1alpha or cytoplasmic FIH had a significantly shorter relapse-free survival (P=0.007 and P=0.049, respectively). CONCLUSIONS: The aggressive nature of BRCA1 and basal-type tumours may be partly explained by an enhanced hypoxic drive and hypoxia driven ER degradation because of suppressed PHD and aberrantly located FIH expression. This may have important implications, as these tumours may respond to compounds directed against HIF-1alpha or its downstream targets
Geometric frustration in compositionally modulated ferroelectrics
Geometric frustration is a broad phenomenon that results from an intrinsic
incompatibility between some fundamental interactions and the underlying
lattice geometry1-7. Geometric frustration gives rise to new fundamental
phenomena and is known to yield intriguing effects, such as the formation of
exotic states like spin ice, spin liquids and spin glasses1-7. It has also led
to interesting findings of fractional charge quantization and magnetic
monopoles5,6. Geometric frustration related mechanisms have been proposed to
understand the origins of relaxor behavior in some multiferroics, colossal
magnetocapacitive coupling and unusual and novel mechanisms of high Tc
superconductivity1-5. Although geometric frustration has been particularly well
studied in magnetic systems in the last 20 years or so, its manifestation in
the important class formed by ferroelectric materials (that are compounds
exhibiting electric rather than magnetic dipoles) is basically unknown. Here,
we show, via the use of a first-principles-based technique, that
compositionally graded ferroelectrics possess the characteristic "fingerprints"
associated with geometric frustration. These systems have a highly degenerate
energy surface and exhibit original critical phenomena. They further reveal
exotic orderings with novel stripe phases involving complex spatial
organization. These stripes display spiral states, topological defects and
curvature. Compositionally graded ferroelectrics can thus be considered as the
"missing" link that brings ferroelectrics into the broad category of materials
able to exhibit geometric frustration. Our ab-initio calculations allow a deep
microscopic insight into this novel geometrically frustrated system.Comment: 14 pages, 5 Figures;
http://www.nature.com/nature/journal/v470/n7335/full/nature09752.htm
The prolyl hydroxylase enzymes are positively associated with hypoxia-inducible factor-1α and vascular endothelial growth factor in human breast cancer and alter in response to primary systemic treatment with epirubicin and tamoxifen
Introduction: The purpose of the present study was to investigate the relationship of expression of hypoxia inducible factor (HIF)-1α-modifying enzymes prolyl hydroxylase (PHD)1, PHD2 and PHD3 to response of tumours and survival in breast cancer patients enrolled in a phase II trial of neoadjuvant anthracycline and tamoxifen therapy.Methods: The expression of PHD1, PHD2 and PHD3 together with HIF-1α and the HIF-inducible genes vascular endothelial cell growth factor (VEGF) and carbonic anhydrase IX were assessed by immunohistochemistry using a tissue microarray approach in 211 patients with T2-4 N0-1 breast cancer enrolled in a randomised trial comparing single-agent epirubicin versus epirubicin and tamoxifen as the primary systemic treatment.Results: PHD1, PHD2 and PHD3 were detected in 47/179 (26.7%), 85/163 (52.2%) and 69/177 (39%) of tumours at baseline. PHD2 and PHD3 expression was moderate/strong whereas PHD1 expression was generally weak. There was a significant positive correlation between HIF-1α and PHD1 (P = 0.002) and PHD3 (P < 0.05) but not PHD2 (P = 0.41). There was a significant positive relationship between VEGF and PHD1 (P < 0.008) and PHD3 (P = 0.001) but not PHD2 (P = 0.09). PHD1, PHD2 and PHD3 expression was significantly increased after epirubicin therapy (all P < 0.000) with no significant difference in PHD changes between the treatment arms. There was no significant difference in response in tumours that expressed PHDs and PHD expression was not associated with survival.Conclusions: Although expression of the PHDs was not related to response or survival in patients receiving neoadjuvant epirubicin, our data provide the first evidence that these enzymes are upregulated on therapy in breast cancer and that the biological effects independent of HIF make them therapeutic targets. © 2011 Fox et al.; licensee BioMed Central Ltd
A Survey of Genomic Traces Reveals a Common Sequencing Error, RNA Editing, and DNA Editing
While it is widely held that an organism's genomic information should remain constant, several protein families are known to modify it. Members of the AID/APOBEC protein family can deaminate DNA. Similarly, members of the ADAR family can deaminate RNA. Characterizing the scope of these events is challenging. Here we use large genomic data sets, such as the two billion sequences in the NCBI Trace Archive, to look for clusters of mismatches of the same type, which are a hallmark of editing events caused by APOBEC3 and ADAR. We align 603,249,815 traces from the NCBI trace archive to their reference genomes. In clusters of mismatches of increasing size, at least one systematic sequencing error dominates the results (G-to-A). It is still present in mismatches with 99% accuracy and only vanishes in mismatches at 99.99% accuracy or higher. The error appears to have entered into about 1% of the HapMap, possibly affecting other users that rely on this resource. Further investigation, using stringent quality thresholds, uncovers thousands of mismatch clusters with no apparent defects in their chromatograms. These traces provide the first reported candidates of endogenous DNA editing in human, further elucidating RNA editing in human and mouse and also revealing, for the first time, extensive RNA editing in Xenopus tropicalis. We show that the NCBI Trace Archive provides a valuable resource for the investigation of the phenomena of DNA and RNA editing, as well as setting the stage for a comprehensive mapping of editing events in large-scale genomic datasets
Three-dimensional mechanical evaluation of joint contact pressure in 12 periacetabular osteotomy patients with 10-year follow-up
Background and purpose Because of the varying structure of dysplastic hips, the optimal realignment of the joint during periacetabular osteotomy (PAO) may differ between patients. Three-dimensional (3D) mechanical and radiological analysis possibly accounts better for patient-specific morphology, and may improve and automate optimal joint realignment
Recruitment of regulatory T cells is correlated with hypoxia-induced CXCR4 expression, and is associated with poor prognosis in basal-like breast cancers
Introduction: Basal-like breast cancers behave more aggressively despite the presence of a dense lymphoid infiltrate. We hypothesised that immune suppression in this subtype may be due to T regulatory cells (Treg) recruitment driven by hypoxia-induced up-regulation of CXCR4 in Treg.Methods: Immunoperoxidase staining for FOXP3 and CXCL12 was performed on tissue microarrays from 491 breast cancers. The hypoxia-associated marker carbonic anhydrase IX (CA9) and double FOXP3/CXCR4 staining were performed on sections from a subset of these cancers including 10 basal-like and 11 luminal cancers matched for tumour grade.Results: High Treg infiltration correlated with tumour CXCL12 positivity (OR 1.89, 95% CI 1.22 to 2.94, P = 0.004) and basal phenotype (OR 3.14, 95% CI 1.08 to 9.17, P = 0.004) in univariate and multivariate analyses. CXCL12 positivity correlated with improved survival (P = 0.005), whereas high Treg correlated with shorter survival for all breast cancers (P = 0.001), luminal cancers (P < 0.001) and basal-like cancers (P = 0.040) that were confirmed in a multivariate analysis (OR 1.61, 95% CI 1.02 to 2.53, P = 0.042). In patients treated with hormone therapy, high Treg were associated with a shorter survival in a multivariate analysis (OR 1.78, 95% CI 1.01 to 3.15, P = 0.040). There was a tendency for luminal cancers to show CXCL12 expression (102/138, 74%) compared to basal-like cancers (16/27, 59%), which verged on statistical significance (P = 0.050). Up-regulation of CXCR4 in Treg correlated with the basal-like phenotype (P = 0.029) and tumour hypoxia, as indicated by CA9 expression (P = 0.049).Conclusions: Our data show that in the setting of hypoxia and CXCR4 up-regulation in Treg, CXCL12 expression may have the negative consequence of enhancing Treg recruitment and suppressing the anti-tumour immune response. © 2011 Yan et al.; licensee BioMed Central Ltd
Effects of FVB/NJ and C57Bl/6J strain backgrounds on mammary tumor phenotype in inducible nitric oxide synthase deficient mice
The ability to genetically manipulate mice has led to rapid progress in our understanding of the roles of different gene products in human disease. Transgenic mice have often been created in the FVB/NJ (FVB) strain due to its high fecundity, while gene-targeted mice have been developed in the 129/SvJ-C57Bl/6J strains due to the capacity of 129/SvJ embryonic stem cells to facilitate germline transmission. Gene-targeted mice are commonly backcrossed into the C57Bl/6J (B6) background for comparison with existing data. Genetic modifiers have been shown to modulate mammary tumor latency in mouse models of breast cancer and it is commonly known that the FVB strain is susceptible to mammary tumors while the B6 strain is more resistant. Since gene-targeted mice in the B6 background are frequently bred into the polyomavirus middle T (PyMT) mouse model of breast cancer in the FVB strain, we have sought to understand the impact of the different genetic backgrounds on the resulting phenotype. We bred mice deficient in the inducible nitric oxide synthase (iNOS) until they were congenic in the PyMT model in the FVB and B6 strains. Our results reveal that the large difference in mean tumor latencies in the two backgrounds of 53 and 92Â days respectively affect the ability to discern smaller differences in latency due to the Nos2 genetic mutation. Furthermore, the longer latency in the B6 strain enables a more detailed analysis of tumor formation indicating that individual tumor development is not stoichastic, but is initiated in the #1 glands and proceeds in early and late phases. NO production affects tumors that develop early suggesting an association of iNOS-induced NO with a more aggressive tumor phenotype, consistent with human clinical data positively correlating iNOS expression with breast cancer progression. An examination of lung metastases, which are significantly reduced in PyMT/iNOS(â/â) mice compared with PyMT/iNOS(+/+) mice only in the B6 background, is concordant with these findings. Our data suggest that PyMT in the B6 background provides a useful model for the study of inflammation-induced breast cancer
Observation of associated near-side and away-side long-range correlations in âsNN=5.02ââTeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (ÎÏ) and pseudorapidity (Îη) are measured in âsNN=5.02ââTeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1ââÎŒb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Îη|<5) ânear-sideâ (ÎÏâŒ0) correlation that grows rapidly with increasing ÎŁETPb. A long-range âaway-sideâ (ÎÏâŒÏ) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Îη and ÎÏ) and ÎŁETPb dependence. The resultant ÎÏ correlation is approximately symmetric about Ï/2, and is consistent with a dominant cosâĄ2ÎÏ modulation for all ÎŁETPb ranges and particle pT
- âŠ