75 research outputs found

    SGLT2 inhibition versus sulfonylurea treatment effects on electrolyte and acid-base balance:secondary analysis of a clinical trial reaching glycemic equipoise: Tubular effects of SGLT2 inhibition in Type 2 diabetes

    Get PDF
    Sodium-glucose transporter (SGLT)2 inhibitors increase plasma magnesium and plasma phosphate and may cause ketoacidosis, but the contribution of improved glycemic control to these observations as well as effects on other electrolytes and acid-base parameters remain unknown. Therefore, our objective was to compare the effects of SGLT2 inhibitors dapagliflozin and sulfonylurea gliclazide on plasma electrolytes, urinary electrolyte excretion, and acid-base balance in people with Type 2 diabetes (T2D). We assessed the effects of dapagliflozin and gliclazide treatment on plasma electrolytes and bicarbonate, 24-hour urinary pH and excretions of electrolytes, ammonium, citrate, and sulfate in 44 metformin-treated people with T2D and preserved kidney function. Compared with gliclazide, dapagliflozin increased plasma chloride by 1.4 mmol/l (95% CI 0.4-2.4), plasma magnesium by 0.03 mmol/l (95% CI 0.01-0.06), and plasma sulfate by 0.02 mmol/l (95% CI 0.01-0.04). Compared with baseline, dapagliflozin also significantly increased plasma phosphate, but the same trend was observed with gliclazide. From baseline to week 12, dapagliflozin increased the urinary excretion of citrate by 0.93 ± 1.72 mmol/day, acetoacetate by 48 μmol/day (IQR 17-138), and β-hydroxybutyrate by 59 μmol/day (IQR 0-336), without disturbing acid-base balance. In conclusion, dapagliflozin increases plasma magnesium, chloride, and sulfate compared with gliclazide, while reaching similar glucose-lowering in people with T2D. Dapagliflozin also increases urinary ketone excretion without changing acid-base balance. Therefore, the increase in urinary citrate excretion by dapagliflozin may reflect an effect on cellular metabolism including the tricarboxylic acid cycle. This potentially contributes to kidney protection

    Genetic interaction between two VNTRs in the MAOA gene is associated with the nicotine dependence

    Get PDF
    Nicotine dependence is an addiction to tobacco products and a global public health concern that in part would be influenced by our genetics. Smokers are reported to have reduced MAOA activity, but the results from genetic associations with this gene have been inconclusive. Two functionally relevant variable number tandem repeat (VNTR) domains, termed uVNTR and dVNTR, in the MAOA gene are well characterized transcriptional regulatory elements. In the present study, we analyzed uVNTR and dVNTR polymorphisms in the MAOA gene in the Vietnamese male population of smokers and non-smokers in order to assess the association of MAOA with the nicotine dependence measured by the Fagerström Test for Nicotine Dependence (FTND). Individual analysis of VNTRs separately identified uVNTR to be associated with the F6 question of the FTND indicating the stronger addiction to nicotine. No associations were found between the dVNTR and smoking behavior. The combination of dVNTR and uVNTR, that predicts low expression of MAOA (10–3 haplotypes), was significantly associated with the higher nicotine dependence (FTND score), longer smoking duration, and more persistent smoking behavior (fewer quit attempts). In conclusion, our study confirms that low MAOA expression is genetically predictive to the higher nicotine dependence

    The Genetic Variations Associated With Time to Aseptic Loosening After Total Joint Arthroplasty

    Get PDF
    Background Total joint arthroplasty (TJA) is one of the most frequent surgical procedures performed in modern hospitals, and aseptic loosening is the most common indication for revision surgeries. We conducted a systemic exploration of potential genetic determinants for early aseptic loosening. Methods Data from 423 patients undergoing TJA were collected and analyzed. Three analytical groups were formed based on joint arthroplasty status. Group 1 were TJA patients without symptoms of aseptic loosening of at least 1 year, group 2 were patients with primary TJA, and group 3 were patients receiving revision surgery because of aseptic loosening. Genome-wide genotyping comparing genotype frequencies between patients with and without aseptic loosening (group 3 vs groups 1 and 2) was conducted. A case-control association analysis and linear modeling were applied to identify the impact of the identified genes on implant survival with time to the revision as an outcome measure. Results We identified 52 single-nucleotide polymorphisms (SNPs) with a genome-wide suggestive P value less than 10−5 to be associated with the implant loosening. The most remarkable odds ratios (OR) were found with the variations in the IFIT2/IFIT3 (OR, 21.6), CERK (OR, 12.6), and PAPPA (OR, 14.0) genes. Variations in the genotypes of 4 SNPs—rs115871127, rs16823835, rs13275667, and rs2514486—predicted variability in the time to aseptic loosening. The time to aseptic loosening varied from 8 to 16 years depending on the genotype, indicating a substantial effect of genetic variance. Conclusion Development of the aseptic loosening is associated with several genetic variations and we identified at least 4 SNPs with a significant effect on the time for loosening. These data could help to develop a personalized approach for TJA and loosening management

    13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides

    Get PDF
    We present here a set of 13C-direct detected NMR experiments to facilitate the resonance assignment of RNA oligonucleotides. Three experiments have been developed: (1) the (H)CC-TOCSY-experiment utilizing a virtual decoupling scheme to assign the intraresidual ribose 13C-spins, (2) the (H)CPC-experiment that correlates each phosphorus with the C4′ nuclei of adjacent nucleotides via J(C,P) couplings and (3) the (H)CPC-CCH-TOCSY-experiment that correlates the phosphorus nuclei with the respective C1′,H1′ ribose signals. The experiments were applied to two RNA hairpin structures. The current set of 13C-direct detected experiments allows direct and unambiguous assignment of the majority of the hetero nuclei and the identification of the individual ribose moieties following their sequential assignment. Thus, 13C-direct detected NMR methods constitute useful complements to the conventional 1H-detected approach for the resonance assignment of oligonucleotides that is often hindered by the limited chemical shift dispersion. The developed methods can also be applied to large deuterated RNAs

    Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants

    Get PDF
    Vitiligo is an autoimmune disease in which depigmented skin results from the destruction of melanocytes1, with epidemiological association with other autoimmune diseases2. In previous linkage and genome-wide association studies (GWAS1 and GWAS2), we identified 27 vitiligo susceptibility loci in patients of European ancestry. We carried out a third GWAS (GWAS3) in European-ancestry subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new significantly associated loci and 7 suggestive loci. Most encode immune and apoptotic regulators, with some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some of which corresponds to expression quantitative trait loci (eQTLs) at these loci. Together, the identified genes provide a framework for the genetic architecture and pathobiology of vitiligo, highlight relationships with other autoimmune diseases and melanoma, and offer potential targets for treatment

    Patient Retention and Adherence to Antiretrovirals in a Large Antiretroviral Therapy Program in Nigeria: A Longitudinal Analysis for Risk Factors

    Get PDF
    Substantial resources and patient commitment are required to successfully scale-up antiretroviral therapy (ART) and provide appropriate HIV management in resource-limited settings. We used pharmacy refill records to evaluate risk factors for loss to follow-up (LTFU) and non-adherence to ART in a large treatment cohort in Nigeria.We reviewed clinic records of adult patients initiating ART between March 2005 and July 2006 at five health facilities. Patients were classified as LTFU if they did not return >60 days from their expected visit. Pharmacy refill rates were calculated and used to assess non-adherence. We identified risk factors associated with LTFU and non-adherence using Cox and Generalized Estimating Equation (GEE) regressions, respectively. Of 5,760 patients initiating ART, 26% were LTFU. Female gender (p < 0.001), post-secondary education (p = 0.03), and initiating treatment with zidovudine-containing (p = 0.004) or tenofovir-containing (p = 0.05) regimens were associated with decreased risk of LTFU, while patients with only primary education (p = 0.02) and those with baseline CD4 counts (cell/ml(3)) >350 and <100 were at a higher risk of LTFU compared to patients with baseline CD4 counts of 100-200. The adjusted GEE analysis showed that patients aged <35 years (p = 0.005), who traveled for >2 hours to the clinic (p = 0.03), had total ART duration of >6 months (p<0.001), and CD4 counts >200 at ART initiation were at a higher risk of non-adherence. Patients who disclosed their HIV status to spouse/family (p = 0.01) and were treated with tenofovir-containing regimens (p < or = 0.001) were more likely to be adherent.These findings formed the basis for implementing multiple pre-treatment visit preparation that promote disclosure and active community outreaching to support retention and adherence. Expansion of treatment access points of care to communities to diminish travel time may have a positive impact on adherence

    Rare and low-frequency coding variants alter human adult height

    Get PDF
    Height is a highly heritable, classic polygenic trait with ~700 common associated variants identified so far through genome - wide association studies . Here , we report 83 height - associated coding variants with lower minor allele frequenc ies ( range of 0.1 - 4.8% ) and effects of up to 2 16 cm /allele ( e.g. in IHH , STC2 , AR and CRISPLD2 ) , >10 times the average effect of common variants . In functional follow - up studies, rare height - increasing alleles of STC2 (+1 - 2 cm/allele) compromise d proteolytic inhibition of PAPP - A and increased cleavage of IGFBP - 4 in vitro , resulting in higher bioavailability of insulin - like growth factors . The se 83 height - associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates ( e.g. ADAMTS3, IL11RA, NOX4 ) and pathways ( e.g . proteoglycan/ glycosaminoglycan synthesis ) involved in growth . Our results demonstrate that sufficiently large sample sizes can uncover rare and low - frequency variants of moderate to large effect associated with polygenic human phenotypes , and that these variants implicate relevant genes and pathways

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis
    corecore