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Sodium–glucose transporter (SGLT)2 inhibitors increase plasma magnesium and plasma
phosphate and may cause ketoacidosis, but the contribution of improved glycemic control
to these observations as well as effects on other electrolytes and acid–base parameters
remain unknown. Therefore, our objective was to compare the effects of SGLT2 inhibitors
dapagliflozin and sulfonylurea gliclazide on plasma electrolytes, urinary electrolyte excretion,
and acid–base balance in people with Type 2 diabetes (T2D). We assessed the effects of da-
pagliflozin and gliclazide treatment on plasma electrolytes and bicarbonate, 24-hour urinary
pH and excretions of electrolytes, ammonium, citrate, and sulfate in 44 metformin-treated
people with T2D and preserved kidney function. Compared with gliclazide, dapagliflozin in-
creased plasma chloride by 1.4 mmol/l (95% CI 0.4–2.4), plasma magnesium by 0.03 mmol/l
(95% CI 0.01–0.06), and plasma sulfate by 0.02 mmol/l (95% CI 0.01–0.04). Compared with
baseline, dapagliflozin also significantly increased plasma phosphate, but the same trend
was observed with gliclazide. From baseline to week 12, dapagliflozin increased the urinary
excretion of citrate by 0.93 +− 1.72 mmol/day, acetoacetate by 48 μmol/day (IQR 17–138),
and β-hydroxybutyrate by 59 μmol/day (IQR 0–336), without disturbing acid–base balance.
In conclusion, dapagliflozin increases plasma magnesium, chloride, and sulfate compared
with gliclazide, while reaching similar glucose-lowering in people with T2D. Dapagliflozin
also increases urinary ketone excretion without changing acid–base balance. Therefore,
the increase in urinary citrate excretion by dapagliflozin may reflect an effect on cellular
metabolism including the tricarboxylic acid cycle. This potentially contributes to kidney pro-
tection.
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Introduction
Sodium–glucose transporter (SGLT)2 inhibitors was the first glucose lowering drug-class to improve cardiovascu-
lar and kidney outcomes in people with Type 2 diabetes (T2D) at high risk for cardiovascular disease [1]. SGLT2
inhibitors lower plasma glucose levels by reducing sodium-coupled glucose reuptake in the proximal tubule [2].
Although glycosuria is the main change induced by SGLT2 inhibition, it also alters the tubular handling of other
electrolytes including sodium. SGLT2 inhibitors have been found to increase certain plasma electrolytes, includ-
ing magnesium and phosphate [3]. SGLT2 inhibition also predisposes people with diabetes to euglycemic diabetic
ketoacidosis (DKA) [1]. However, an integrative assessment of the effects of SGLT2 inhibition on electrolyte and
acid–base balance in people with T2D is lacking. Plasma glucose concentrations also influence tubular transport of
different solutes and water [4]. Therefore, the aim of the present study was to analyze the effects of SGLT2 inhibi-
tion on electrolyte and acid–base balance compared with sulfonylurea treatment with equal glucose lowering. This
allowed us to dissect the direct tubular effects of SGLT2 inhibition from those related to glycemia.

Materials and methods
Trial design
This is a pre-specified secondary analysis of the RED (Renoprotective Effects of Dapagliflozin in Type 2 Diabetes)
trial; a phase-4, monocenter, randomized, double-blind, comparator-controlled, parallel-group, intervention trial [5].
The trial was originally designed to determine treatment-induced changes in gold-standard measured renal hemody-
namics after 12-week dapagliflozin and gliclazide therapy in people with T2D. After a 4-week run-in period, partici-
pants were randomized to dapagliflozin 10 mg or gliclazide 30 mg (block-size of 4, performed by an independent trial
pharmacist using computer-generated numbers), and treated for 12 weeks. Before and after treatment, participants
collected urine during a 24-h period that ended on the night before a visit to the clinical research unit. Participants
were given oral and written instructions on how to collect a 24-h urine-sample, and were instructed to postpone col-
lection in case of fever or urinary tract infection, and to refrain from strenuous exercise during the collection-period.
After an overnight fast, blood samples were obtained at 07:30 AM. The week before the test visits, participants adhered
to normal sodium (9–12 g/day) and protein (1.5–2.0 g/kg/day) diets, in order to minimize variation. Written informed
consent was obtained from all participants before any trial-related activities. The study complied with the Declaration
of Helsinki and Good Clinical Practice guidelines and was registered at ClinicalTrials.gov (ID: NCT02682563) [5].

Study population
Participants were recruited from our study database and by advertisements in local newspapers. As described [5],
we included Caucasian (to maximize homogeneity) men and postmenopausal women, aged 35–75 years, with an
HbA1c from 6.5% to 9.0% (48–75 mmol/mol) and a body mass index >25 kg/m2. Inclusion criteria included met-
formin monotherapy (stable dose for ≥ 3 months) and a well-controlled blood pressure (i.e., <140/90 mm Hg).
Exclusion criteria included the use of diuretics, an estimated glomerular filtration rate (GFR) <60 ml/min/1.73 m2,
and macro-albuminuria (i.e. ACR >300 mg/g).

Outcome measures
The endpoints of this pre-specified secondary analysis of the RED trial [5] were dapagliflozin- and gliclazide-induced
changes in plasma concentrations and urinary excretion of electrolytes and ketones, and acid–base balance.

Measurements and calculations
GFR was measured by plasma inulin/iohexol clearances, as described [5]. Fractional excretions were calculated using
fasting plasma and 24 h urine creatinine concentrations. Plasma and urinary sodium, potassium, chloride, magne-
sium, calcium, phosphate, urea, creatinine, bicarbonate, glucose, and uric acid were all measured using routine chem-
istry methods on a Cobas 8000 routine analyser (Roche diagnostics, Mannheim Germany). Creatinine was measured
using the enzymatic method. Urine pH was measured by with the Edge benchtop pH-meter HI2020-02 with CAL
Check. Plasma pH and bicarbonate were measured in heparinized venous blood by the ABL800 FLEX blood gas ana-
lyzer (type ABL825; Radiometer, Zoetermeer, the Netherlands). Plasma and urinary sulfate were measured by means
of a validated ion-exchange chromatography assay with conductivity detection (Metrohm, Herisau, Switzerland) [6].
Citrate in urine was determined by an enzymatic method (Instruchemie, Delfzijl, The Netherlands) on a ABX Pentra
400 clinical chemistry analyzer (Horiba, Montpellier, France). Urinary ammonium was measured in triplicate using
the Berthelot method [7,8]. Plasma and urine acetoacetate was measured in plasma and urine samples by an auto-
mated spectrophotometric enzymatic method on a Beckman UniCel® DXC600 Synchron® Analyzer (Fullerton,
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Figure 1. The effects of dapagliflozin and gliclazide on glucose handling

(A) fasting plasma glucose, (B) absolute urinary gucose excretion, (C) fractinal urinary glucose excretion, (D) glucose reabsorption,

(E) glomerular filtration rate, (F) urine volume. Data were analyzed with paired t-tests within-group and by baseline corrected linear

regression analysis between-group. Data are represented as mean and 95% confidence intervals, and only statistically significant

P-values are shown. Abbreviations: DAPA, dapagliflozin; GLIC, gliclazide.

CA), and β-hydroxybutyrate (BHB) concentrations were measured on a Synchron system CX4 (Beckman Coulter,
Fullerton, CA) [9].

The miliequivalents of each measured anion and cation in the electrogram (Figure 4) were calculated by multiplying
the charge of the ion, if needed calculated from pK of the ion and urine pH, with the absolute excretion in the 24-h
urine collections.

Statistical analysis
Statistical analyses were performed in the per protocol population using SPSS 24.0 (IBM SPSS, Chicago, IL). Mul-
tivariable linear regression models were used to analyze and compare the effects of dapagliflozin and gliclazide.
Corresponding baseline values were added as independent variables to correct for potential between-group base-
line differences. Within-group comparisons were performed using paired samples t-tests (normally distributed data)
or Wilcoxon signed-rank tests (non-normally distributed data). Significance was set at a 2-sided α-level of < 0.05.
Statistically non-significant P-values are not shown in figures. Data are presented as mean +− SD for normally dis-
tributed variables, median (IQR) for non-normally distributed variables, or as baseline corrected mean difference
with a two-sided 95% confidence interval (CI) unless otherwise specified. Since we aimed to provide an inclusive
overview of the treatment effects, we did not correct for multiple testing to minimize the risk of type 2 error.

Results
Clinical trial results
As previously described [5], 44 people were randomized to 12-week treatment with dapagliflozin (n=24) or gliclazide
(n=20). Baseline characteristics were well balanced between treatment groups (Table 1) and medication remained
unchanged during the treatment period. No (serious) adverse events, including hypoglycemic events, episodes of
acute kidney injury or electrolyte disturbances occurred in either group and no participants dropped out after treat-
ment commenced. There were five genital fungal infections in the dapagliflozin group versus none in the gliclazide
group.

© 2020 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society 3109
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Figure 2. The effects of dapagliflozin and gliclazide on fasting plasma electrolyte and bicarbonate concentrations

Data were analyzed with paired t-tests within-group and by baseline corrected linear regression analysis between-group. Data are

represented as mean and 95% confidence intervals, and only statistically significant P-values are shown. Abbreviations: DAPA,

dapagliflozin; GLIC, gliclazide.

Table 1 Baseline characteristics

Characteristic Dapagliflozin (n=24) Gliclazide (n=20)

Age, years 63 +− 7 63 +− 7

Male, n (%) 19 (79) 15 (75)

Current smoker, n (%) 3 (13) 1 (5)

Alcohol intake, units/week 5 (IQR 2–13) 4 (IQR 2–8)

ASCVD, n (%) 4 (17) 1 (5)

Hypertension, n (%) 16 (67) 16 (80)

eGFR (CKD-EPI), ml/min/1.73 m2 85 +− 13 89 +− 19

UACR, mg/mmol 11 (IQR 6–17) 12 (IQR 4–17)

Diabetes duration, years 9.8 +− 4.1 10.7 +− 7.3

Metformin dose, mg 1556 +− 736 1585 +− 765

Statin, n (%) 16 (67) 14 (70)

RAS inhibitor, n (%) 16 (67) 16 (80)

Data are represented as mean +− SD, frequency, or median (IQR). Abbreviations: ASCVD, atherosclerotic cardiovascular disease; eGFR, estimated
glomerular filtration rate; CKD-EPI, chronic kidney disease epidemiology collaboration; UACR, Urinary albumin-creatine ratio; RAS, renin–angiotensin
system.
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Table 2 Metabolic and cardiovascular measures

Variable Dapagliflozin (n=24) Gliclazide (n=20)

Corrected mean difference da-
pagliflozin – gliclazide (95% CI) and
P-value

Week 0 Week 12
Within-
group Week 0 Week 12

Within-
group

Body weight, kg 96.6 +− 17.9 93.7 +− 16.9 P<0.001 98.5 +− 17.9 99.6 +− 18.3 P=0.001 -4.03 (-2.81 to -5.24) P<0.001

Body mass index, kg/m2 30.8 +− 3.9 29.8 +− 3.7 P<0.001 31.6 +− 3.9 31.9 +− 4.1 P=0.001 -1.30 (-0.93 to -1.67) P<0.001

Systolic blood pressure,
mmHg

137.7 +−
13.6

129.2 +−
10.7

P=0.001 131.6 +−
11.4

131.1 +−
11.8

P=0.83 -5.3 (-10.9 to 0.2) P=0.06

Diastolic blood pressure,
mmHg

84.4 +− 5.7 80.4 +− 5.6 P<0.001 81.7 +− 5.4 80.9 +− 6.5 P=0.51 -2.6 (-5.3 to 0.2) P=0.06

Heart rate, BPM 65.0 +− 9.9 63.2 +− 7.9 P=0.27 69.4 +− 11.6 69.2 +− 11.3 P=0.90 -3.1 (-7.2 to 1.0) P=0.14

Hematocrit, % 40.7 +− 3.3 42.5 +− 2.9 P<0.001 40.2 +− 2.5 40.2 +− 2.8 P=0.89 1.8 (0.9 to 2.7) P<0.001

Fasting insulin, pmol/l 72.7 +− 58.3 54.3 +− 31.2 P<0.05 55.5 +− 19.6 58.2 +− 23.1 P=0.45 -12.8 (-3.3 to -22.3) P=0.01

HbA1c, % 7.39 +− 0.66 6.92 +− 0.56 P<0.001 7.36 +− 0.60 6.71 +− 0.49 P<0.001 0.19 (-0.05 to 0.43) P=0.12

Fasting plasma glucose,
mmol/l

9.2 +− 1.5 8.2 +− 1.5 P<0.001 8.8 +− 1.6 7.5 +− 1.1 P=0.001 0.4 (-0.3 to 1.1) P=0.23

Glomerular filtration rate,
ml/min

113 +− 20 104 +− 17 P<0.05 113 +− 19 109 +− 20 P=0.12 -5 (-12 to 1) P=0.11

Multivariable linear regression models were used to examine week 0-corrected dapagliflozin- compared with gliclazide-induced effects. Paired
t-tests or Wilcoxon signed rank tests were used for within-group comparisons. Data are represented as mean +− SD. Significant differences
indicated in bold font. Abbreviation: HbA1c, glycated hemoglobin.

Figure 3. The effects of dapagliflozin and gliclazide on 24-h urinary excretion of electrolytes, ammonium, and citrate, and

urinary pH

Data were analyzed with paired t-tests or wilcoxon signed-rank test within-group and by baseline corrected linear regression

analysis between-group. Data are represented as mean, or geometric mean (pH) and 95% confidence intervals. Only statistically

significant P-values are shown. Abbreviations: DAPA, dapagliflozin; GLIC, gliclazide.

Dapagliflozin effects on glucose handling, urinary volume, and mGFR
Dapagliflozin and gliclazide both decreased HbA1c and fasting plasma glucose (FPG), with no between-group dif-
ferences (Figure 1A and Table 2). Dapagliflozin increased both the absolute (Figure 1B) and fractional (Figure 1C)
urinary excretion of glucose, and reduced glucose reabsorption by 44 +− 19% (Figure 1D; P<0.001 for all), both from
baseline and versus gliclazide. From baseline to week 12, dapagliflozin reduced measured GFR by 9 +− 12 ml/min
(P=0.002; Figure 1E and Table 2) [5]. Finally, dapagliflozin increased urine volume from baseline by 319 +− 756
ml/day (P=0.05; Figure 1F). Gliclazide had no significant effects on renal glucose handling and GFR.

Dapagliflozin effects on plasma electrolytes, bicarbonate, and ketones
Compared with gliclazide, dapagliflozin increased plasma chloride by 1.4 mmol/l (95% CI 0.4–2.4; P=0.005), plasma
magnesium by 0.03 mmol/l (95% CI 0.01–0.06; P=0.01), and plasma sulfate by 0.02 mmol/l (95% CI 0.01–0.04;
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Figure 4. The effects of dapagliflozin on the urine electrogram

Miliequivalents of each measured anion and cation were calculated by multiplying the charge of the ion, if needed calculated from

pK of the ion and urine pH, with the absolute excretion in the 24-h urine collections. The anions acetoacetate, β-hydroxybutyrate

and uric acid are shown but not labeled in this figure due to their low excretions.

P=0.008). From baseline, dapagliflozin also increased plasma phosphate by 0.07 +− 0.10 mmol/l (P=0.006), but not
versus gliclazide. Finally, no changes in plasma bicarbonate and plasma pH were observed in either group. (Figure 2).

Dapagliflozin effects on urinary electrolyte excretion and urinary
electrogram
The small changes in plasma electrolyte concentrations were not accompanied by differences in 24-h (Figure 3) or
fractional (Supplementary Table S1) excretions, or urinary pH. Dapagliflozin did induce a 0.93 +− 1.72 mmol/day
(P=0.01) increase in urinary citrate excretion versus baseline. Analysis of the urinary electrogram showed that da-
pagliflozin increased urinary solute excretion but the composition of the urinary electrogram remained unchanged
(Figure 4).

Dapagliflozin effects on plasma and urine ketones
Dapagliflozin increase plasma acetoacetate and β-hydroxybutyrate non-significantly, and increased urinary ace-
toacetate excretion by 48 μmol/day (IQR 17–138; P=0.03) and β-hydroxybutyrate by 59 μmol/day (IQR 0–336;
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Figure 5. The effects of dapagliflozin and gliclazide on fasting plasma ketone levels and urinary ketone excretion

Data were analyzed with Wilcoxon rank-signed tests within-group and by baseline corrected linear regression analysis between–

group. Data are represented as geometric mean and 95% confidence intervals, and only statistically significant P-values are shown.

Abbreviations: DAPA, dapagliflozin; GLIC, gliclazide.

P=0.04). In contrast, gliclazide significantly decreased plasma acetoacetate by 8 μmol/l (IQR -33 to 0; P=0.02), and
β-hydroxybutyrate by 25 μmol/l (IQR -328 to 31, P=0.04), without affecting urinary ketone excretion (Figure 5).

Discussion
In this pre-specified secondary analysis of the RED trial, we analyzed the effects of dapagliflozin on electrolyte and
acid–base balance in people with T2D and preserved renal function. Because the effects of dapagliflozin were com-
pared with the sulfonylurea gliclazide, we were able to study these effects while plasma glucose levels were equally
lowered. We confirm that dapagliflozin causes small but significant increases in plasma magnesium and show for the
first time that this is also the case for plasma chloride and sulfate. Of interest, the dapagliflozin-induced increase in
plasma phosphate appeared to depend on glycemia, because the same trend was observed with gliclazide. Increases
in plasma ketone concentrations were likely prevented by an increase in urinary ketone excretion with dapagliflozin.
Accordingly, there were no effects on systemic acid–base balance, which was also supported by the absence of changes
in urinary ammonium excretion. We did observe an increase in urinary citrate excretion, which is a novel finding.
Below we will discuss possible explanations for these findings, including their potential clinical relevance.

SGLT2 inhibition has been consistently found to increase plasma magnesium concentrations in people with T2D
[10,11], although the mechanism remains unclear. Hypomagnesemia and urinary magnesium wasting are associ-
ated with T2D, possibly due to reduced activity of TRPM6, a transient receptor potential cation channel in the distal
convoluted tubule, and may be secondary to insulin resistance [12,13]. We recently reported that clamp-measured
insulin resistance was unaffected by dapagliflozin or gliclazide, making improved insulin resistance a less likely me-
diator [14]. However, since we did not measure glucose disposal and endogenous glucose production separately, and
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others have found SGLT2 inhibitor-induced improvements in insulin sensitivity [15], we cannot fully discard the
contribution of improved insulin resistance. Glucagon reduces magnesium reabsorption in the proximal tubule, but
strongly increases magnesium reabsorption in the thick ascending limb and distal convoluted tubule [16]. Further-
more, plasma insulin may cause a redistribution of magnesium from the extracellular to the intracellular compartment
[17]. The increased plasma magnesium concentration upon SGLT2 inhibition could thus be caused by the increase
in glucagon/insulin ratios [18]. Another contributing factor to the increased magnesium reabsorption is an increased
chloride reabsorption leading to an increased lumen-positive potential and increase in paracellular reabsorption of
magnesium [19]. The increase in plasma magnesium following SGLT2 inhibition is modest. Yet, the drug class is
currently under investigation as a potential treatment for refractory hypomagnesemia [20].

Dapagliflozin increased plasma sulfate and chloride. The majority of filtered sulfate is reabsorbed in the proximal
tubule, where secondary active sulfate uptake takes place via sodium-coupled sulfate transport, driven by the elec-
trochemical gradient for sodium across the luminal membrane [21]. Because SGLT2 inhibition increases the luminal
sodium gradient, this may explain the increase in plasma sulfate concentrations. In patients with heart failure, sulfate
clearance is related to diuretic use, creatinine clearance, and sodium excretion [22]. Thus, dapagliflozin may increase
plasma sulfate, because of its diuretic properties and its effects on GFR and sodium excretion. As shown by the urine
electrogram, the increase in plasma chloride concentrations is due to increased chloride reabsorption coupled to other
ions than sodium. In the proximal tubule chloride is mainly reabsorbed paracellularly in the S3 segment. Therefore,
a shift of solute transport from the S1/S2 segments to the S3 segment could explain the increase in plasma chloride
[23]. Effects of dapagliflozin on transcellular chloride transport seem less likely, as these are coupled to bicarbonate,
and we found no effects on plasma bicarbonate [24]. Although disturbances in plasma chloride levels have been im-
plicated in worsened outcome in heart failure (hypochloremia) [25] or renal disease (hyperchloremia) [26], chloride
levels remained within the normal range in our study and the observed increase is probably too small to affect clinical
outcome.

Plasma phosphate levels were increased by dapagliflozin after 12 weeks of treatment. It is believed that
sodium-coupled phosphate reabsorption (via NaPi2) is increased in the proximal tubule by the higher availability
of sodium following SGLT2 inhibition [27]. Increases in phosphate reabsorption and serum phosphate levels, to-
gether with increases in plasma parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23) and reductions in
1,25-dihydroxyvitamin D levels, have been previously found, both in healthy volunteers treated with canagliflozin
[28] and in people with T2D and CKD stage 2 to 4 treated with dapagliflozin [29]. Because plasma phosphate also
increased with gliclazide, we found no between group differences, which might indicate a glucose-dependent mech-
anism. It is however also possible that gliclazide increases plasma phosphate levels via increasing insulin levels [30].

It has been hypothesized that increased PTH and FGF23 secretion following increased phosphate reabsorption
upon SGLT2 inhibition may be detrimental for bone health [27]. However, a dedicated analysis found no effect of
dapagliflozin versus placebo on markers of bone formation/resorption, bone mineral density, or fractures, while PTH
and FGF23 also remained unchanged despite a slight increase in plasma phosphate [31]. Although bone fractures have
been added to the label of SGLT2 inhibitor drug-class as an adverse effect, data remain conflicting. Dapagliflozin
increased fracture risk versus placebo in a phase III trial including 252 people with T2D and stage 3 CKD [32], as
did canagliflozin in the post-marketing CANVAS program [33]. In contrast, fracture risk was not increased in other
outcome trials with SGLT2 inhibitors, including the renal CREDENCE trial using canagliflozin [34–36].

SGLT2 inhibitors increase the risk for diabetic ketoacidosis, which is a major problem in people with T1D, where
absolute risks up to 6% have been found [37]. Although absolute risks are extremely low in people with T2D
(0.005–0.6%), especially those with sufficient endogenous insulin production, relative risks are significantly increased
[33,35,36]. In addition to increased ketogenesis [18], it has been hypothesized that SGLT2 inhibition might reduce
urinary ketone excretion. The increased luminal sodium concentration could theoretically drive the reabsorption
of filtered ketone bodies via the proximal tubule transporters SLC5A8 (S3 segment) and SLC5A12 (S1, S2, and S3
segments) [38]. In contrast to this hypothesis, we observed an increase, rather than a decrease, in urinary ketone
excretion. These results are in agreement with a previous study, although this study did not report the effects on ace-
toacetate [9]. The increased delivery of ketone bodies to the proximal tubule seemingly contributes to attenuated dia-
betes associated kidney damage, potentially via correcting mTORC1 hyperactivation [39]. Furthermore, we observed
no changes in plasma ketones following dapagliflozin, despite increased urinary glucose excretion and decreased
plasma insulin concentrations following dapagliflozin. Accordingly, venous and urinary pH, venous bicarbonate lev-
els, and urinary ammonium excretion were unaffected by both treatments. Dapagliflozin did increase urinary citrate
excretion. The proximal tubule regulates citrate reabsorption in response to changes in systemic acid–base balance
[40], but because we did not observe these changes, other explanations must apply. Since citrate can be released from
bone, increased bone resorption, as discussed above, might be an explanation [41]. Of interest, citrate accumulates
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in the kidney cortex of diabetic mice, and this effect is nullified by SGLT2 inhibition [42]. The normalization of ac-
cumulated tricarboxylic acid cycle intermediates such as citrate by SGLT2 inhibitors may reduce oxidative stress and
thereby contribute to kidney protection. Indeed, patients with diabetes and low urinary citrate experience more rapid
progression of CKD [43,44]. The use of urine metabolomics in future research may be helpful to further explore this
pathway.

The strength of the present study is the randomized and double-blind design of the trial with the incorporation
of an active comparator group providing the possibility to compare the effects of dapagliflozin with a control-group
that reached similar glucose lowering. However, the present study also has a number of limitations. First, we excluded
patients with heart failure or CKD, and those using diuretics. The results can therefore not be translated to patients
with these comorbidities in which electrolyte and acid-base disorders are common. Second, we did not measure
plasma citrate concentrations. Third, it is to be expected that a new electrolyte balance is reached after 12 weeks and
that urinary excretion mainly depends on dietary intake. Although we standardized sodium and protein intake, diet
was not fully controlled. Fourth, the study was not primarily powered for the analysis presented here. Therefore,
we provide an overview of the observed effects, with statistical testing within groups and between groups, without
rigorous correction for multiple testing. This increased the risk of type 1 error. Finally, we were unable to pinpoint
which tubular mechanisms were responsible for the changes in plasma electrolyte concentrations, and propose that
experimental studies are required to resolve this. Of note, dapagliflozin reduced blood pressure, GFR, body weight
and increased hematocrit, while gliclazide did not. We have previously described the mechanisms explaining these
effects [2,5], and cannot exclude that these effects might have influenced our results. Lastly, despite the fact that
randomization rendered well balanced groups, blood pressure and plasma insulin levels differed somewhat at baseline.
Although we statistically corrected for baseline values, this potentially affected the physiological effects of both drugs.

In conclusion, dapagliflozin caused small increases in plasma chloride, magnesium, and sulfate, while gliclazide did
not despite similar glucose lowering. Dapagliflozin also increased urinary ketone and citrate excretion. Especially the
increase in urinary citrate excretion by dapagliflozin is a novel finding that may reflect an effect on cellular metabolism
including the tricarboxylic acid cycle. This could potentially contribute to kidney protection by this drug-class.

Clinical perspectives
• SGLT2 inhibitors target hyperglycemia by limiting sodium-coupled glucose uptake in the proximal

tubule in people with Type 2 diabetes and have been shown to improve cardiorenal outcome. They
are increasingly being used in clinical practice, but an integrative assessment of the effects of SGLT2
inhibition on electrolyte and acid–base balance in people with T2D was lacking. Especially in com-
parison with an equally potent glucose lowering agent.

• Dapagliflozin caused small increases in plasma chloride, magnesium, and sulfate, while gliclazide did
not despite similar glucose lowering. Dapagliflozin also increased urinary ketone and citrate excretion.

• Our findings help deepen our understanding of the tubular effects of this novel drug class. Especially,
the increase in urinary citrate excretion by dapagliflozin is a novel finding that may reflect an effect
on cellular metabolism including the tricarboxylic acid cycle. This could potentially contribute to the
observed kidney protection.
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