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Abstract 27 

Background 28 

Total joint arthroplasty (TJA) is one of the most frequent surgical procedures performed in 29 

modern hospitals, and aseptic loosening is the most common indication for revision surgeries. 30 

We conducted a systemic exploration of potential genetic determinants for early aseptic 31 

loosening. 32 

Methods 33 

Data from 423 patients undergoing TJA were collected and analysed. Three analytical groups 34 

were formed based on joint replacement status. Group 1 were TJA patients without 35 

symptoms of aseptic loosening of at least one year, group 2 were patients with primary TJA 36 

and group 3 were patients receiving revision surgery because of aseptic loosening. Genome-37 

wide genotyping comparing genotype frequencies between patients with and without aseptic 38 

loosening (group 3 versus groups 1 and 2) was conducted. A case-control association analysis 39 

and linear modelling was applied to identify the impact of the identified genes on implant 40 

survival with time to the revision as an outcome measure. 41 

Results 42 

We identified 52 SNPs with a genome-wide suggestive p-value less than 10-5 to be associated 43 

with the implant loosening. The most remarkable odds ratios were found with the variations 44 

in the IFIT2/IFIT3 (OR 21.6), CERK (OR 12.6) and PAPPA (OR 14.0) genes. Variations in the 45 

genotypes of four SNPs - rs115871127, rs16823835, rs13275667 and rs2514486 - predicted 46 

variability in the time to aseptic loosening. The time to aseptic loosening varied from 8 to 16 47 

years depending on the genotype, indicating a substantial effect of genetic variance. 48 

Conclusion 49 

Development of the aseptic loosening is associated with several genetic variations and we 50 

identified at least four SNPs with a significant effect on the time for loosening. These data 51 

could help to develop a personalised approach for TJA and loosening management. 52 

 53 
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Introduction 57 

Aseptic loosening is a significant complication following prosthetic arthroplasty, which 58 

reduces implant survival and is a leading cause of revision surgery [1]. Aseptic loosening, or 59 

adverse immune reaction (AIR), is a complex reaction thought to be driven by a chronic 60 

immune activation that leads to osteolysis [2]. The probability of developing an osteolytic 61 

response is likely to be a combination of environmental and genetic factors, since 62 

susceptibility to osteolysis is variable between individuals with identical implant types [3]. 63 

Environmental factors (such as implant material), in combination with genetic susceptibility, 64 

may trigger an immune response to the implant, resulting in implant-induced osteolysis. 65 

The mechanism of immune system activation and osteolysis appears to differ 66 

depending on the implant material. Metal-on-metal (MoM) constructs are thought to 67 

generate small metallic wear debris, which typically triggers a lymphocyte-mediated 68 

immunological response [4, 5], although activation of innate immunity that involves Toll-like 69 

receptors has also been demonstrated [6]. Metal-on-polymer (MoP) devices generate both 70 

small and sizeable polymeric wear debris that triggers an innate immune response through 71 

the Toll-like receptor pathway and periprosthetic tissue activation [4, 7].  72 

In particular, the level of polyethylene (PE) wear particles correlates strongly with the 73 

degree of osteolysis [7].Although the cross-linked bearing surface of MoP implants was 74 

designed to reduce the amount of wear debris, and are generally better tolerated than MoM 75 

implants,  PE particles are still capable of stimulating an inflammatory, pro-catabolic 76 

phenotype that can result in the development of osteolysis in a similar manner to MoM 77 

implants [7, 8].  78 
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Therefore, according to our present understanding, wear debris from any type of 79 

implant induces a multifaceted immune response with the generation of osteolysis that leads 80 

to aseptic loosening [9]. This simplistic model does not account for genetic susceptibility and 81 

does not explain the individual differences between patients in their risk of developing aseptic 82 

loosening. 83 

Only a few studies have addressed the role of genetic variability in the development 84 

of aseptic loosening. In one of the early studies, SNPs in the OPG and RANK genes were found 85 

to have a positive association [3]. Subsequent research also identified the positive 86 

associations with MBL, MMP-1 and VDR genes [10, 11]. Significant associations with GNAS1 87 

and TNF genes were initially described [12, 13], although additional analyses found no 88 

association between aseptic loosening and GNAS1, or with BCL2, CALCA and P2RX7 genes [14-89 

16]. These studies indicate that a genetic influence for aseptic loosening exists, but the results 90 

are not yet convincing.  91 

Taken together, the role of genetic susceptibility and detailed mechanisms of aseptic 92 

loosening are still unclear. The HypOrth consortium, consisting of 8 partners from 6 different 93 

EU member states and Switzerland, was established to develop a better understanding of the 94 

mechanisms underlying aseptic loosening and the development of predictive biomarkers. The 95 

present study is a part of the HypOrth project and aims to identify genetic markers associated 96 

with aseptic loosening. 97 

 98 

  99 
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 100 

Material and methods 101 

Study design and participants 102 

Ethical Review boards at the University of Magdeburg and the University of Tartu approved 103 

the study protocols (IRB No 150/12 and Tartu No 227/T-14). Subjects participating in this 104 

study provided informed consent and 423 patients were recruited between September of 105 

2013 and December of 2015. General epidemiological data for the patient cohorts are 106 

presented in Table 1. Participants were divided into three groups: patients with no symptoms 107 

of aseptic loosening who received an endoprosthesis at least one year previously (Group 1 108 

n=156); patients undergoing primary endoprosthesis surgery (Group 2 n=163); and patients 109 

receiving revision surgery because of aseptic loosening (Group 3 n=104).  110 

After quality control and data filtering, analysis was performed on the remaining 156 111 

subjects in Group 1, 133 subjects in Group 2 and 97 subjects in Group 3. Blood samples were 112 

collected from each patient before surgery. Study data was collected and managed using the 113 

REDCap (Research Electronic Data Capture) electronic data capture tools hosted at the 114 

University of Tartu [17]. REDCap is a secure, web-based application designed to support data 115 

capture for research studies, providing: 1) an intuitive interface for validated data entry; 2) 116 

audit trails for tracking data manipulation and export procedures; 3) automated export 117 

procedures for seamless data downloads to common statistical packages; and 4) procedures 118 

for importing data from external sources. 119 

 120 

Sample preparation and genotyping 121 

DNA was purified from the blood samples at the University of Tartu and the University of 122 

Magdeburg using standard protocols. Genotyping was performed with an Illumina Infinium 123 
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PsychArray v 1.3 array at the Genomics & Biomarker Core Facility at the Institute of Psychiatry, 124 

Maudsley Biomedical Research Centre. This array contains around 600,000 markers to 125 

provide high-throughput genotyping. After quality control, the association analysis was 126 

performed. 127 

 128 

Genome-wide association analysis 129 

A genome-wide association study of 97 cases and 289 controls was carried out using PLINK 130 

software. Survival analysis and Cow regression was performed with statistical environment R 131 

(https://www.r-project.org). Linear modelling was performed using SPSS. After quality 132 

control, a statistical analysis was performed in two stages: the association analysis was 133 

performed first, followed by linear modelling of implant survival. During the association 134 

analysis, Group 3 was tested against Groups 1 and 2, which were used as controls. In linear 135 

modelling of implant survival, only Group 3 data were used.  136 

Survival analysis for the time from primary surgery until revision surgery was applied. 137 

Kaplan-Meier survival curves were used to compare genotype effects on survival differences. 138 

Cox proportional hazard model was used for genotype-related regression analysis of the 139 

implant survival. 140 

  141 
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Results 142 

We initially identified 52 SNPs to be associated with aseptic loosening with at least a 143 

suggestive genome-wide significance (p-value below 10-5; Table 1 and Figure 1). Several hot 144 

spots are visible on the Manhattan plot on chromosomes 2, 9, 14 and 22. The majority of SNPs 145 

were intergenic or from genes with no known function. However, several SNPs were 146 

identified in genes related to bone remodelling and inflammation. The highest odds ratio (OR) 147 

was for interferon-induced protein with tetratricopeptide repeats 2 (IFIT2) and 3 (IFIT3) genes 148 

(OR 21.6), followed by pappalysin 1 (PAPPA: OR 14.01) and ceramide kinase (CERK: OR 12.64).  149 

We next analysed whether the identified SNPs were associated with implant survival. 150 

We identified 32 SNPs related to time to revision surgery (Table 2). We used regression 151 

modelling and survival analysis to determine the impact of genotype on time to revision 152 

surgery. Statistically significant differences between genotype and time to revision were 153 

found for SNPs rs115871127, rs16823835, rs13275667 and rs2514486 (Table 3, Figure 2). The 154 

period of implant survival between genotypes AA and AG for SNP rs115871127 differed by 155 

approximately ten years. For SNP rs16823835, the AA genotype was associated with an 156 

average implant survival of 8.3 years, the AG genotype with a survival of 12.2 years and the 157 

GG genotype with a survival of 15.5 years from primary surgery to revision, indicating a clear 158 

linear increment in the survival of the implant. Implant survival times for SNP rs13275667 159 

genotype AA was 13.2 years, genotype AG was 8.4 years and genotype GG was 8 years from 160 

primary surgery. Finally, for SNP rs2514486, the implant lasted for 13 years in patients with a 161 

GG genotype, 9 years with a GA genotype and 7 years for AA genotypes.  162 

The statistically significant differences were also evident in the Kaplan-Meier survival 163 

analysis, indicating the involvement of these four SNPs in implant survival (Figure 3). Cox 164 

regression confirmed statistically significant differences in survival times were related to the 165 
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difference in the genotypes of the four SNPs with significantly different hazard ratios (HRs) 166 

(Figure 4). Rs115871127, located on chromosome 4, has a HR of 19.8, indicating its potential 167 

influence on development of aseptic loosening. The other three SNPs had lower, although still 168 

statistically significant, HRs from 3.8 to 4.3. 169 

  170 



 9 

Discussion 171 

Aseptic loosening is the most common reason for the failure of an artificial joint prosthesis 172 

and as such is a significant factor for requirement of revision surgery [18]. Different 173 

pathogenetic models exist, indicating that autoimmunity, particle material and size, and bone 174 

remodelling all play a role. Autoimmune responses to the implants have been found to be 175 

strongly associated with genetic variations that can explain the TJA outcome differences 176 

between patients [3]. However, whether a potential genetic predisposition to aseptic 177 

loosening exists has not been well studied. Only a few studies have addressed the problem, 178 

and these studies have only analysed associations with selected genes [12-15, 19].  179 

In the present study, we performed a genome-wide association study to find genes 180 

and SNPs that may be associated with the development of aseptic loosening. We identified 181 

52 SNPs with a suggestive genome-wide significance. Using linear modelling and survival 182 

analysis, we identified four SNPs with a highly significant effect on time to revision surgery. 183 

These four SNPs may be useful in the future as predictive genetic markers to identify patients 184 

with an increased risk for aseptic loosening after TJA.  185 

The identification of several SNPs with high odds ratios related to aseptic loosening is 186 

one of our main findings. While the function of the most of these genes is not known, the 187 

finding itself is remarkable. These SNPs designate regions in the human genome that confer 188 

susceptibility to aseptic loosening. The Manhattan plot (Figure 1) suggests the presence of 189 

clusters of aseptic loosening susceptibility regions. The most prominent region seems to be 190 

on chromosome 9 (6 SNPs), followed by chromosome 14 (at least 2 associated SNPs). 191 

Clustering of these SNPs is indirect evidence that the genetic association with aseptic 192 

loosening has a functional consequence.  193 
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Of the genes with a known function, CERK encodes ceramide kinase, an enzyme that 194 

is involved in ceramide metabolism and inflammation [20]. The CERK protein is involved in a 195 

newly identified pathway regulating the anti-proliferative action of vitamin D3 [21]. PAPPA 196 

encodes pappalysin 1, a metalloprotease involved in the homeostasis of insulin-like growth 197 

factors [22]. Pappalysin 1 is involved in bone formation and has been implicated in the 198 

pathogenesis of Ewing sarcoma [23, 24]. The list of the most significant GWAS hits also 199 

included the IFIT2 and IFIT3 genes that are involved in the regulation of innate immune 200 

response and inflammation [25]. While there is no direct evidence that the genes identified 201 

in this study have a role in the development of aseptic loosening, these genes do have a 202 

function in bone remodelling and immune regulation and deserve attention as indicators of 203 

potentially significant and undiscovered pathways that may be future targets for therapeutic 204 

intervention. 205 

Previous studies have identified associations with genetic variations in TGFB1, TNF, 206 

BCL2, GNAS1, CALCA and other genes with pre-existing molecular evidence in bone 207 

metabolism or immune regulation [14, 15, 19]. These studies tested the hypothesis that 208 

particular genes are involved in aseptic loosening and focused on the selected list of genes 209 

based on existing information of their role in the regulation of osteogenesis [26, 27]. Selected 210 

molecular targets are involved in the balance between osteolytic and osteogenic processes. 211 

For instance, loss-of-function polymorphisms in the P2RX7 gene could impair osteogenesis, 212 

and a significant association between genetic variation in P2RX7 and THA failure has been 213 

found [16]. BCL2 regulates proliferation and apoptosis in normal tissues, but it is also involved 214 

in osteolysis induced by wear particles [28]. The promoter of BCL2 has polymorphisms 215 

regulating gene activity, and these polymorphisms have been studied in the context of aseptic 216 

loosening [15, 29]. 217 
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Similarly, CALCA encodes alpha-CGRP and calcitonin, which are involved in bone 218 

remodelling and particle-induced osteolysis [26, 30]. A previous study that tested whether 219 

both of these genes were associated with aseptic loosening did not find an association [15]. 220 

A more recent study identified a significant connection between BCL2 polymorphisms and 221 

time to aseptic loosening [19]. CALCA and BCL2 are good examples that even functionally-222 

justified genes do not provide unambiguous associations in genetic association paradigms, 223 

illustrating the complexity of genome function. 224 

The second main finding of our study was the identification of statistically significant 225 

SNPs that have an impact on the time to revision surgery, or survival of the implant. The 226 

survival differences were remarkable, with differences of between 5 and 10 years. All these 227 

SNPs had very high hazard ratios (HR). Three SNPs had HRs of approximately 4, and the fourth 228 

SNP had a HR of 19. These numbers are indicative of the enormous impact that given SNPs 229 

have on the risk of development of aseptic loosening.  230 

The present study has several limitations. One of the limitations is the small sample 231 

size, which is not sufficiently powered to identify SNPs with smaller effects. Nevertheless, 232 

larger genetic effects on aseptic loosening were still evident, with several SNPs identified that 233 

were associated with a higher risk for the loss of implant. An additional study, with a larger 234 

sample size and additional international partners, is necessary. A new study would also serve 235 

as an independent validation of the findings presented here. The other limitation is the lack 236 

of the functional validation of the results. SNPs with statistically significant effects should 237 

have an apparent functional role, but a functional analysis was outside the scope of this study. 238 

Finally, the small sample size did not allow stratification by implant material or by any other 239 

clinically relevant characteristics that could be important in predicting implant survival.  240 
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Conclusions 241 
In conclusion, in the current genome-wide association analysis, several genes were found to 242 

be significantly associated with aseptic loosening, with the SNPs identified in these genes 243 

showing a significant impact on implant survival. The results presented here suggest that 244 

genetic susceptibility may have a significant impact on the outcomes of the TJA and provide 245 

clear evidence for the existence of genotypes that could be utilised as markers for 246 

personalised management of TJA. However, further validation studies with independent 247 

samples are needed.  248 
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Table 1. Demographics of the study groups. 269 

 270 
 271 
 272 
  273 

Male : Female ratio 167 : 256 
Group 1 : Group 2 : Group 3 ratio before QC 156 : 163 : 104 
Group 1 : Group 2 : Group 3 ratio after QC 156 : 133 : 97 
Magdeburg : Tartu sites 220 : 203 
Mean age during revision ± SD 68.9 ± 10.3 
Mean age during primary surgery ± SD 58.9 ± 11.9 
Mean age during inclusion to study ± SD 68.16 ± 8.9 
Mean duration to revision ± SD, years 10.1 ± 6.55 
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 274 
Table 2. Association with the aseptic loosening for 52 SNPs with suggestive p-values 275 
 276 

SNP Chromo 
some 

Position Major/Minor 
Allele 

Gene Minor Allele 
Frequency 

P-Value Odds 
Ratio 

rs10131142 14 21231661 C/A LOC107984671 0.09 4.08E-07 6.47 
exm1619312 22 47108189 G/A CERK 0.06 7.51E-07 12.64 
rs10813300 9 30567014 A/C  0.44 1.53E-06 2.27 
rs1885318 14 21244696 A/C LOC107984671 0.29 2.00E-06 2.53 
psy_rs72739140 9 85363649 G/A  0.08 2.32E-06 6.84 
rs10969796 9 30619070 A/G  0.27 2.49E-06 2.57 
1KG_2_39262640 2 39262640 D/I SOS1 0.04 4.48E-06 NA 
exm2259311 9 30647718 C/A  0.40 5.54E-06 2.21 
rs1033216 9 30647718 C/A  0.40 5.54E-06 2.21 
rs10962594 9 16791743 A/G BNC2 0.21 6.97E-06 2.74 
rs4699193 4 106601989 A/G ARHGEF38 0.14 1.25E-05 3.30 
psy_rs149989188 9 118954442 A/G PAPPA 0.05 1.27E-05 14.01 
rs13185834 5 10857683 C/A  0.42 1.43E-05 2.11 
rs1538294 1 246146328 G/A SMYD3 0.32 1.72E-05 2.22 
rs10813260 9 30467975 G/A  0.35 1.94E-05 2.17 
rs2687386 4 33288145 C/A  0.28 1.97E-05 2.30 
rs2488552 9 136669004 A/G VAV2 0.44 2.07E-05 2.06 
rs3849892 9 30679704 A/G  0.25 2.33E-05 2.39 
psy_rs72797226 5 151974836 C/A  0.34 3.59E-05 2.12 
psy_rs72739291 9 101937605 G/A  0.06 3.94E-05 6.29 
rs2377092 12 7960723 G/A  0.11 4.16E-05 3.57 
exm840504 10 91066446 G/C IFIT2 0.04 4.35E-05 21.60 
exm840569 10 91099466 G/C IFIT3 0.04 4.35E-05 21.60 
rs7027645 9 30698142 G/A  0.24 4.66E-05 2.32 
rs2795050 1 230504875 C/A PGBD5 0.31 5.09E-05 2.14 
rs2687463 4 33240041 A/G  0.29 5.15E-05 2.17 
rs338935 1 58853893 A/C  0.25 5.55E-05 2.27 
exm1387498 18 50683727 A/T DCC 0.05 5.57E-05 7.80 
kgp5187881 5 166543705 A/C  0.14 5.77E-05 2.95 
rs9634217 12 95823231 A/C  0.22 5.79E-05 2.37 
exm534227 6 32036788 G/A TNXB 0.05 5.97E-05 9.32 
exm2260300 14 25977770 C/A  0.05 5.97E-05 9.32 
rs2280302 9 97349520 A/G FBP2 0.07 6.03E-05 4.92 
psy_rs182382303 19 29695986 A/G  0.07 6.03E-05 4.92 
rs12486758 3 20907259 G/A  0.12 6.07E-05 3.25 
rs4396955 4 169845720 G/A PALLD 0.04 6.09E-05 0.24 
kgp10945711 4 169850155 A/C  0.04 6.09E-05 0.24 
rs17054604 4 169909593 G/A CBR4 0.04 6.09E-05 0.24 
rs6940071 6 22404476 A/G  0.31 6.12E-05 0.50 
rs2059764 12 11503205 G/A  0.51 6.75E-05 1.94 
kgp11611891 12 87552248 A/G  0.15 6.87E-05 2.75 
rs7223173 17 18805887 G/A PRPSAP2 0.30 7.11E-05 0.50 
kgp971099 12 86996435 A/C MGAT4C 0.18 7.33E-05 2.55 
rs7966441 12 41981726 A/C  0.18 7.36E-05 2.58 
rs562445 1 166730812 G/A  0.09 7.50E-05 0.36 
exm2262088 6 165493183 A/G  0.20 7.52E-05 0.46 
psy_rs13095942 3 65278571 A/G  0.11 7.56E-05 3.39 
rs9671539 14 21203159 G/A  0.11 7.56E-05 3.39 
rs920233 3 127295084 G/A TPRA1 0.37 8.56E-05 2.01 
rs16924281 8 59845715 G/A TOX 0.11 8.98E-05 3.23 
rs1029723 17 54767548 A/G  0.44 9.03E-05 1.94 
rs9509986 13 22630930 C/A  0.26 9.20E-05 2.19 

 277 
  278 
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Table 3. SNPs predicting implant survival in linear model. 279 
 280 

SNP Chromo 
some 

Position Gene Beta R2 T P-Value 

rs115871127 4 34860320  12.09 0.22 5.24 9.83E-07 
rs16823835 2 145288341 LOC101928455 3.99 0.20 4.93 3.48E-06 
rs13275667 8 5092970  -3.07 0.19 -4.69 9.19E-06 
rs2514486 11 80975989  -3.01 0.19 -4.68 9.35E-06 
rs10859419 12 93452175 LOC643339 4.82 0.18 4.59 1.37E-05 
rs7190447 16 16289126 ABCC6 5.32 0.18 4.58 1.43E-05 
rs6894296 5 179532944 RASGEF1C 3.53 0.18 4.55 1.58E-05 
rs1393097 5 28286502  3.31 0.17 4.46 2.26E-05 
rs6798584 3 8548827 LMCD1 3.12 0.17 4.42 2.64E-05 
exm567347 6 97414949 KLHL32 7.21 0.17 4.40 2.84E-05 
exm1066643 13 44411432 CCDC122 4.62 0.17 4.40 2.84E-05 
rs7043949 9 2651809 VLDLR 9.42 0.17 4.38 3.04E-05 
rs2063572 9 2663639  9.42 0.17 4.38 3.04E-05 
rs6540172 16 88151971  3.37 0.17 4.37 3.13E-05 
rs11126167 2 68115179  -3.22 0.16 -4.33 3.70E-05 
rs1503236 2 68138786  -3.04 0.16 -4.29 4.27E-05 
rs6704741 2 68149455  -3.08 0.16 -4.28 4.40E-05 
rs429963 12 117170989 C12orf49 -3.01 0.16 -4.22 5.62E-05 
rs4798656 18 8579817  2.93 0.16 4.21 5.71E-05 
rs4959299 6 4492079  -3.39 0.16 -4.21 5.73E-05 
rs9392718 6 5831567  -2.82 0.16 -4.21 5.86E-05 
rs7203013 16 6964963 RBFOX1 3.50 0.16 4.20 6.10E-05 
rs797827 7 83583757  2.83 0.16 4.19 6.33E-05 
rs10515721 5 154527802  6.89 0.15 4.17 6.71E-05 
rs67411719 19 3052907 AES 5.54 0.15 4.15 7.20E-05 
rs2012125 19 1630341 TCF3 3.36 0.15 4.12 7.99E-05 
rs768082 11 29037522  3.27 0.15 4.12 8.10E-05 
exm1100436 14 50788213 ATP5S -2.93 0.15 -4.10 8.82E-05 
rs2275592 14 50788213 ATP5S -2.93 0.15 -4.10 8.82E-05 
exm1100483 14 50799126 CDKL1 -2.93 0.15 -4.10 8.82E-05 
rs13282938 8 3196760 CSMD1 3.71 0.15 4.10 8.83E-05 
rs1052651 12 96052721 NTN4 2.87 0.15 4.07 9.74E-05 
 281 
 282 
  283 
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 284 
Legends to the figures 285 
 286 

Figure 1. Manhattan plot of the GWAS results. Ten of the most significant SNPs are labelled. 287 

The majority of SNPs are in the chromosome 9. 288 

 289 

Figure 2. Time to revision surgery (implant survival) in years, in relation to the genotypes of 290 

SNPs rs16823835, rs2514486, rs13275667 and rs115871127. A clear linear relationship is 291 

evident, and all SNPs had a statistically significant effect over the implant survival. 292 

 293 

Figure 3. Kaplan-Meier survival graphs indicating relationship between genotype and time to 294 

develop aseptic loosening. 295 

 296 

Figure 4. The Cox regression modelling identified significant hazard ratios in development of 297 

aseptic loosening related to the genotypes of four SNPs. 298 

  299 
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