783 research outputs found

    An unusual muscle of the wrist with potential compression of the ulnar nerve

    Get PDF
    During routine cadaveric dissection of the upper extremity an unusual muscle was discovered arising from the tendon of the flexor carpi ulnaris and inserting into the muscle belly of the flexor digiti minimi. The muscle’s course was superficial to the ulnar nerve and artery in Guyon’s canal. We review the literature regarding such muscle variations and discuss the potential for compression of the ulnar nerve by such muscles

    A search for ferromagnetism in transition-metal-doped piezoelectric ZnO

    Full text link
    We present the results of a computational study of ZnO in the presence of Co and Mn substitutional impurities. The goal of our work is to identify potential ferromagnetic ground states within the (Zn,Co)O or (Zn,Mn)O material systems that are also good candidates for piezoelectricity. We find that, in contrast to previous results, robust ferromagnetism is not obtained by substitution of Co or Mn on the Zn site, unless additional carriers (holes) are also incorporated. We propose a practical scheme for achieving such pp-type doping in ZnO

    MSSM phenomenology in the large tanb regime

    Full text link
    We discuss aspects of the low energy phenomenology of the MSSM, in the large tanβ\tan {\beta} regime. We explore the regions of the parameter space where the hth_t and hbh_b Yukawa couplings exhibit a fixed point structure, using previous analytic solutions for these couplings. Expressions for the parameters AtA_{t} and AbA_{b} and the renormalised soft mass terms are also derived, making it possible to estimate analytically the sparticle loop -- corrections to the bottom mass, which are important in this limit.Comment: 13 pages,latex file, 3 latex figures included. Version to appear in Phys. Lett.

    Cosmological Effects of Radion Oscillations

    Full text link
    We show that the redshift of pressureless matter density due to the expansion of the universe generically induces small oscillations in the stabilized radius of extra dimensions (the radion field). The frequency of these oscillations is proportional to the mass of the radion and can have interesting cosmological consequences. For very low radion masses mbm_b (mb10100H01032eVm_b\sim10-100 H_0\simeq10^{-32} eV) these low frequency oscillations lead to oscillations in the expansion rate of the universe. The occurrence of acceleration periods could naturally lead to a resolution of the coincidence problem, without need of dark energy. Even though this scenario for low radion mass is consistent with several observational tests it has difficulty to meet fifth force constraints. If viewed as an effective Brans-Dicke theory it predicts ω=1+1D\omega=-1+\frac{1}{D} (DD is the number of extra dimensions), while experiments on scales larger than 1mm1mm imply ω>2500\omega>2500. By deriving the generalized Newtonian potential corresponding to a massive toroidally compact radion we demonstrate that Newtonian gravity is modified only on scales smaller than mb1m_b^{-1}. Thus, these constraints do not apply for mb>103eVm_b>10^{-3} eV (high frequency oscillations) corresponding to scales less than the current experiments (0.3mm0.3mm). Even though these high frequency oscillations can not resolve the coincidence problem they provide a natural mechanism for dark matter generation. This type of dark matter has many similarities with the axion.Comment: Accepted in Phys. Rev. D. Clarifying comments added in the text and some additional references include

    Numerical convergence of the block-maxima approach to the Generalized Extreme Value distribution

    Full text link
    In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems. In this setting, recent works have shown how to get a statistics of extremes in agreement with the classical Extreme Value Theory. We pursue these investigations by giving analytical expressions of Extreme Value distribution parameters for maps that have an absolutely continuous invariant measure. We compare these analytical results with numerical experiments in which we study the convergence to limiting distributions using the so called block-maxima approach, pointing out in which cases we obtain robust estimation of parameters. In regular maps for which mixing properties do not hold, we show that the fitting procedure to the classical Extreme Value Distribution fails, as expected. However, we obtain an empirical distribution that can be explained starting from a different observable function for which Nicolis et al. [2006] have found analytical results.Comment: 34 pages, 7 figures; Journal of Statistical Physics 201

    Multi-ancestry meta-analysis of host genetic susceptibility to tuberculosis identifies shared genetic architecture

    Get PDF
    The heritability of susceptibility to tuberculosis (TB) disease has been well recognized. Over 100 genes have been studied as candidates for TB susceptibility, and several variants were identified by genome-wide association studies (GWAS), but few replicate. We established the International Tuberculosis Host Genetics Consortium to perform a multi-ancestry meta-analysis of GWAS, including 14,153 cases and 19,536 controls of African, Asian, and European ancestry. Our analyses demonstrate a substantial degree of heritability (pooled polygenic h2 = 26.3%, 95% CI 23.7–29.0%) for susceptibility to TB that is shared across ancestries, highlighting an important host genetic influence on disease. We identified one global host genetic correlate for TB at genome-wide significance (p<5 × 10-8) in the human leukocyte antigen (HLA)-II region (rs28383206, p-value=5.2 × 10-9) but failed to replicate variants previously associated with TB susceptibility. These data demonstrate the complex shared genetic architecture of susceptibility to TB and the importance of large-scale GWAS analysis across multiple ancestries experiencing different levels of infection pressure

    Search for a scalar or vector particle decaying into Zgamma in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a search for a narrow scalar or vector resonance decaying into Zgamma with a subsequent Z decay into a pair of electrons or muons. The data for this search were collected with the D0 detector at the Fermilab Tevatron ppbar collider at a center of mass energy sqrt(s) = 1.96 TeV. Using 1.1 (1.0) fb-1 of data, we observe 49 (50) candidate events in the electron (muon) channel, in good agreement with the standard model prediction. From the combination of both channels, we derive 95% C.L. upper limits on the cross section times branching fraction (sigma x B) into Zgamma. These limits range from 0.19 (0.20) pb for a scalar (vector) resonance mass of 600 GeV/c^2 to 2.5 (3.1) pb for a mass of 140 GeV/c^2.Comment: Published by Phys. Lett.

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging

    Get PDF
    We present a measurement of the top quark pair (ttˉt\bar{t}) production cross section (σttˉ\sigma_{t\bar{t}}) in ppˉp\bar{p} collisions at s=1.96\sqrt{s}=1.96 TeV using 230 pb1^{-1} of data collected by the D0 experiment at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), missing transverse energy, and jets in the final state. We employ lifetime-based b-jet identification techniques to further enhance the ttˉt\bar{t} purity of the selected sample. For a top quark mass of 175 GeV, we measure σttˉ=8.61.5+1.6(stat.+syst.)±0.6(lumi.)\sigma_{t\bar{t}}=8.6^{+1.6}_{-1.5}(stat.+syst.)\pm 0.6(lumi.) pb, in agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore