145 research outputs found

    Axion and neutrino physics from anomaly cancellation

    Get PDF
    It has been recently shown that the requirement of anomaly cancellation in a (non-supersymmetric) six-dimensional version of the standard model fixes the field content to the known three generations. We discuss the phenomenological consequences of the cancellation of the local anomalies: the strong CP problem is solved and the fundamental scale of the theory is bounded by the physics of the axion. Neutrinos acquire a mass in the range suggested by atmospheric experiments.Comment: 9 pages, RevTeX

    Variation of Bar Strength with Central Velocity Dispersion in Spiral Galaxies

    Full text link
    We investigate the variation of bar strength with central velocity dispersion in a sample of barred spiral galaxies. The bar strength is characterized by QgQ_g, the maximal tangential perturbation associated with the bar, normalized by the mean axisymmetric force. It is derived from the galaxy potentials which are obtained using near-infrared images of the galaxies. However, QgQ_g is sensitive to bulge mass. Hence we also estimated bar strengths from the relative Fourier intensity amplitude (A2A_{2}) of bars in near-infrared images. The central velocity dispersions were obtained from integral field spectroscopy observations of the velocity fields in the centers of these galaxies; it was normalized by the rotation curve amplitude obtained from HI line width for each galaxy. We found a correlation between bar strengths (both QgQ_g and A2A_{2}) and the normalized central velocity dispersions in our sample. This suggests that bars weaken as their central components become kinematically hotter. This may have important implications for the secular evolution of barred galaxies.Comment: To appear in Ap&S

    Charged lepton electric dipole moments with the localized leptons and the new Higgs doublet in the two Higgs doublet model

    Full text link
    We study the lepton electric dipole moments in the split fermion scenario, in the two Higgs doublet model, where the new Higgs scalars are localized around the origin in the extra dimension, with the help of the localizer field. We observe that the numerical value of the electron (muon, tau) electric dipole moment is at the order of the magnitude of 10^{-31} (10^{-24}, 10^{-22}) (e-cm) and this quantity is sensitive the new Higgs localization in the extra dimension.Comment: 20 pages, 7 figure

    An inflation model with large variations in spectral index

    Get PDF
    Recent fits of cosmological parameters by the Wilkinson Microwave Anisotropy Probe (WMAP) measurement favor a primordial scalar spectrum with varying index. This result, if stands, could severely constrain inflation model buildings. Most extant slow-roll inflation models allow for only a tiny amount of scale variations in the spectrum. We propose in this paper an extra-dimensional inflation model which is natural theoretically and can generate the required variations of the spectral index as implied by the WMAP for suitable choices of parameters.Comment: 5 pages, 3 figures, REVTeX 4. Comments on low CMB quadrupoles added; Version accepted for publication in Phys. Rev.

    Treatment Outcomes of Patients With Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis According to Drug Susceptibility Testing to First- and Second-line Drugs: An Individual Patient Data Meta-analysis

    Get PDF
    The clinical validity of drug susceptibility testing (DST) for pyrazinamide, ethambutol, and second-line antituberculosis drugs is uncertain. In an individual patient data meta-analysis of 8955 patients with confirmed multidrug-resistant tuberculosis, DST results for these drugs were associated with treatment outcome

    Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure

    Get PDF
    Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
    • 

    corecore