54 research outputs found

    Chronic Respiratory Symptoms in Croatian Adriatic Island Metapopulations

    Get PDF
    Aim: To investigate the prevalence of chronic respiratory symptoms in 9 metapopulations on Adriatic islands in Croatia, and the relationship between respiratory symptoms and individual genetic background. Methods: We obtained random sample of 1001 adult inhabitants of 9 Adriatic island villages in Croatia, that also included immigrants to these villages. European Union respiratory health questionnaire and World Health Organization non-communicable diseases questionnaire were used. Personal genetic histories were reconstructed, based on the two-generation ancestral pedigrees. Bivariate and multivariate methods were used in the analysis. Results: Women reported the occurrence of acute dyspnea (P=0.017), cough (P=0.002), and asthma (P=0.002) more often than men. Gender was the strongest predictor for acute and/or chronic cough (odds ratio [OR], 1.69; 95% confidence interval [CI], 1.23-2.33) and asthma (OR, 2.00; 95% CI, 1.00-4.01), whereas smoking was the strongest risk factor for acute and chronic dyspnea (OR, 1.90; 95% CI, 1.21-2.99) and airway narrowing (OR, 1.84; 95% CI, 1.18-2.87). Residence on the northern islands increased the odds of allergy, whereas the highest odds ratio of 3.20 was associated with the interaction of northern residence and immigrant background. Genetic background was a significant predictor only for the occurrence of allergy symptoms. Conclusion: Differences in respiratory findings among the island inhabitants were often associated with smoking prevalence. Interaction of residence on northern Adriatic islands and immigrant background proved to be the strongest predictor for the occurrence of allergy symptoms. This study indicated that environmental factors played a very important role in the occurrence of respiratory symptoms

    Respiratory Findings in Art Students

    Get PDF
    Art students are exposed to many noxious agents during their training. We studied respiratory findings in a cohort of the 117 art students in order to investigate the potential effects of these toxic agents in the art student’s environment. A group of 88 medical students matched for age, sex and smoking, not exposed to known environmental pollutants were studied as controls for respiratory symptoms. Respiratory symptoms acute and chronic were evaluated by modifying the British Medical Research Council questionnaire. Lung function studies were performed with a spirometer (Jaeger, Germany) measuring maximum expiratory flow-volume (MEFV) curves. Significantly higher prevalences of most of the chronic respiratory symptoms were recorded in art compared to medical students (p <0.05). Art students who were smokers had significantly higher prevalences of many of the chronic respiratory symptoms than nonsmoking art students. High prevalences of acute symptoms related to the study environment were recorded for art students. Odds ratios in male art students were significant for chronic cough, chronic phlegm and chronic bronchitis for the risk factors of exposure and smoking. Significantly decreased lung function was recorded for FVC, FEF50 and FEF25 in male and FVC, and FEF25 in female art students. Smokers and nonsmokers had similar reductions of lung function. Our data indicate that art students may be at risk of developing chronic respiratory symptoms and lung function changes as a result of their exposure and their smoking habits

    Gender and respiratory findings in workers occupationally exposed to organic aerosols: A meta analysis of 12 cross-sectional studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gender related differences in respiratory disease have been documented. The aim of this study was to investigate gender related differences in respiratory findings by occupation. We analyzed data from 12 of our previously published studies.</p> <p>Methods</p> <p>Three thousand and eleven (3011) workers employed in "organic dust" industries (1379 female and 1632 male) were studied. A control group of 806 workers not exposed to any kind of dust were also investigated (male = 419, female = 387). Acute and chronic respiratory symptoms and lung function were measured. The weighted average method and the Mantel-Haentszel method were used to calculate the odds ratios of symptoms. Hedge's unbiased estimations were used to measure lung function differences between men and women.</p> <p>Results</p> <p>There were high prevalences of acute and chronic respiratory symptoms in all the "dusty" studied groups compared to controls. Significantly less chronic cough, chronic phlegm as well as chronic bronchitis were found among women than among men after the adjustments for smoking, age and duration of employment. Upper respiratory tract symptoms by contrast were more frequent in women than in men in these groups. Significant gender related lung function differences occurred in the textile industry but not in the food processing industry or among farmers.</p> <p>Conclusion</p> <p>The results of this study suggest that in industries processing organic compounds there are gender differences in respiratory symptoms and lung function in exposed workers. Whether these findings represent true physiologic gender differences, gender specific workplace exposures or other undefined gender variables not defined in this study cannot be determined. These data do not suggest that special limitations for women are warranted for respiratory health reasons in these industries, but the issue of upper respiratory irritation and disease warrants further study.</p

    Advances and unmet needs in genetic, basic and clinical science in Alport syndrome::report from the 2015 International Workshop on Alport Syndrome

    Get PDF
    Alport syndrome (AS) is a genetic disease characterized by haematuric glomerulopathy variably associated with hearing loss and anterior lenticonus. It is caused by mutations in the COL4A3, COL4A4 or COL4A5 genes encoding the α3α4α5(IV) collagen heterotrimer. AS is rare, but it accounts for >1% of patients receiving renal replacement therapy. Angiotensin-converting enzyme inhibition slows, but does not stop, the progression to renal failure; therefore, there is an urgent requirement to expand and intensify research towards discovering new therapeutic targets and new therapies. The 2015 International Workshop on Alport Syndrome targeted unmet needs in basic science, genetics and diagnosis, clinical research and current clinical care. In three intensive days, more than 100 international experts including physicians, geneticists, researchers from academia and industry, and patient representatives from all over the world participated in panel discussions and breakout groups. This report summarizes the most important priority areas including (i) understanding the crucial role of podocyte protection and regeneration, (ii) targeting mutations by new molecular techniques for new animal models and potential gene therapy, (iii) creating optimal interaction between nephrologists and geneticists for early diagnosis, (iv) establishing standards for mutation screening and databases, (v) improving widespread accessibility to current standards of clinical care, (vi) improving collaboration with the pharmaceutical/biotech industry to investigate new therapies, (vii) research in hearing loss as a huge unmet need in Alport patients and (viii) the need to evaluate the risk and benefit of novel (including 'repurposing') therapies on an international basis

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment
    corecore