87 research outputs found

    The UK Lung Screen (UKLS): Demographic Profile of First 88,897 Approaches Provides Recommendations for Population Screening

    Full text link
    The UK Lung Cancer Screening trial (UKLS) aims to evaluate low-dose computed tomography (LDCT) lung cancer population screening in the United Kingdom. In UKLS, a large population sample ages 50 to 75 years is approached with a questionnaire to determine lung cancer risk. Those with an estimated risk of at least 5% of developing lung cancer in the next 5 years (using the Liverpool Lung project risk model) are invited to participate in the trial. Here, we present demographic, risk, and response rate data from the first 88,897 individuals approached. Of note, 23,794 individuals (26.8% of all approached) responded positively to the initial questionnaire; 12% of these were high risk. Higher socioeconomic status correlated positively with response, but inversely with risk (P < 0.001). The 50- to 55-year age group was least likely to participate, and at lowest cancer risk. Only 5% of clinic attendees were ages ≤60 years (compared with 47% of all 88,897 approached); this has implications for cost effectiveness. Among positive responders, there were more ex-smokers than expected from population figures (40% vs. 33%), and fewer current smokers (14% vs. 17.5%). Of note, 32.7% of current smokers and 18.4% of ex-smokers were designated as high risk. Overall, 1,452 of 23,794 positive responders (6.1%) were deemed high risk and attended a recruitment clinic. UKLS is the first LDCT population screening trial, selecting high-risk subjects using a validated individual risk prediction model. Key findings: (i) better recruitment from ex- rather than current smokers, (ii) few clinic attendees ages early 50s, and (iii) representative number of socioeconomically deprived people recruited, despite lower response rates

    Priorities for mitigating greenhouse gas and ammonia emissions to meet UK policy targets

    Get PDF
    Agriculture is essential for providing food and maintaining food security while concurrently delivering multiple other ecosystem services. However, agricultural systems are generally a net source of greenhouse gases and ammonia. They, therefore, need to substantively contribute to climate change mitigation and net zero ambitions. It is widely acknowledged that there is a need to further reduce and mitigate emissions across sectors, including agriculture to address the climate emergency and emissions gap. This discussion paper outlines a collation of opinions from a range of experts within agricultural research and advisory roles following a greenhouse gas and ammonia emission mitigation workshop held in the UK in March 2022. The meeting identified the top mitigation priorities within the UK’s agricultural sector to achieve reductions in greenhouse gases and ammonia that are compatible with policy targets. In addition, experts provided an overview of what they believe are the key knowledge gaps, future opportunities and co-benefits to mitigation practices as well as indicating the potential barriers to uptake for mitigation scenarios discussed

    Seven HCI Grand Challenges

    Get PDF
    This article aims to investigate the Grand Challenges which arise in the current and emerging landscape of rapid technological evolution towards more intelligent interactive technologies, coupled with increased and widened societal needs, as well as individual and collective expectations that HCI, as a discipline, is called upon to address. A perspective oriented to humane and social values is adopted, formulating the challenges in terms of the impact of emerging intelligent interactive technologies on human life both at the individual and societal levels. Seven Grand Challenges are identified and presented in this article: Human-Technology Symbiosis; Human-Environment Interactions; Ethics, Privacy and Security; Well-being, Health and Eudaimonia; Accessibility and Universal Access; Learning and Creativity; and Social Organization and Democracy. Although not exhaustive, they summarize the views and research priorities of an international interdisciplinary group of experts, reflecting different scientific perspectives, methodological approaches and application domains. Each identified Grand Challenge is analyzed in terms of: concept and problem definition; main research issues involved and state of the art; and associated emerging requirements

    Greenhouse gas and ammonia emission mitigation priorities for UK policy targets

    Get PDF
    Publication history: Accepted - 16 March 2023; Published online - 6th May 2023.Agriculture is essential for providing food and maintaining food security while concurrently delivering multiple other ecosystem services. However, agricultural systems are generally a net source of greenhouse gases and ammonia. They, therefore, need to substantively contribute to climate change mitigation and net zero ambitions. It is widely acknowledged that there is a need to further reduce and mitigate emissions across sectors, including agriculture to address the climate emergency and emissions gap. This discussion paper outlines a collation of opinions from a range of experts within agricultural research and advisory roles following a greenhouse gas and ammonia emission mitigation workshop held in the UK in March 2022. The meeting identified the top mitigation priorities within the UK’s agricultural sector to achieve reductions in greenhouse gases and ammonia that are compatible with policy targets. In addition, experts provided an overview of what they believe are the key knowledge gaps, future opportunities and co-benefits to mitigation practices as well as indicating the potential barriers to uptake for mitigation scenarios discussed.This work was supported with funding from the Scottish Government Strategic Research Programme (2022−2027, C2-1 SRUC) and Biotechnology and Biological Sciences Research Council (BBSRC) (BBS/E/C/000I0320 and BBS/E/C/000I0330). We also acknowledge support from UKRI-BBSRC (UK Research and Innovation-Biotechnology and Biological Sciences Research Council) via grants BBS/E/C/000I0320 and BBS/E/C/000I0330, and Rothamsted Research Science Initiative Catalyst Award supported by BBSRC

    International Society of Sports Nutrition Position Stand: Probiotics.

    Get PDF
    Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: 1)Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO).2)Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications.3)Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent.4)Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown.5)The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components.6)Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes' exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections.7)Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes.8)Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise.9)The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product's shelf life, as measured by colony forming units (CFU) or live cells.10)Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population

    IMPACT-Global Hip Fracture Audit: Nosocomial infection, risk prediction and prognostication, minimum reporting standards and global collaborative audit. Lessons from an international multicentre study of 7,090 patients conducted in 14 nations during the COVID-19 pandemic

    Get PDF

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore